我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
当前回答
如果你想让它递归的话,在之前接受的答案所做的基础上。
class FullStruct:
def __init__(self, **kwargs):
for key, value in kwargs.items():
if isinstance(value, dict):
f = FullStruct(**value)
self.__dict__.update({key: f})
else:
self.__dict__.update({key: value})
其他回答
我偶然发现的情况下,我需要递归转换字典列表到对象列表,所以基于罗伯托的片段在这里为我做了什么工作:
def dict2obj(d):
if isinstance(d, dict):
n = {}
for item in d:
if isinstance(d[item], dict):
n[item] = dict2obj(d[item])
elif isinstance(d[item], (list, tuple)):
n[item] = [dict2obj(elem) for elem in d[item]]
else:
n[item] = d[item]
return type('obj_from_dict', (object,), n)
elif isinstance(d, (list, tuple,)):
l = []
for item in d:
l.append(dict2obj(item))
return l
else:
return d
注意,由于显而易见的原因,任何元组都将被转换为与其列表相当的元素。
希望这能像你们的答案对我一样帮助到别人。
以下是我认为前面例子中最好的方面:
class Struct:
"""The recursive class for building and representing objects with."""
def __init__(self, obj):
for k, v in obj.items():
if isinstance(v, dict):
setattr(self, k, Struct(v))
else:
setattr(self, k, v)
def __getitem__(self, val):
return self.__dict__[val]
def __repr__(self):
return '{%s}' % str(', '.join('%s : %s' % (k, repr(v)) for (k, v) in self.__dict__.items()))
在2021年,使用pydantic BaseModel -将嵌套字典和嵌套json对象转换为python对象,反之亦然:
https://pydantic-docs.helpmanual.io/usage/models/
>>> class Foo(BaseModel):
... count: int
... size: float = None
...
>>>
>>> class Bar(BaseModel):
... apple = 'x'
... banana = 'y'
...
>>>
>>> class Spam(BaseModel):
... foo: Foo
... bars: List[Bar]
...
>>>
>>> m = Spam(foo={'count': 4}, bars=[{'apple': 'x1'}, {'apple': 'x2'}])
对象to dict
>>> print(m.dict())
{'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y'}]}
对象转换为JSON
>>> print(m.json())
{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}
反对的词典
>>> spam = Spam.parse_obj({'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y2'}]})
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y2')])
JSON到对象
>>> spam = Spam.parse_raw('{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}')
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y')])
I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way too slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.
class DictProxy(object):
def __init__(self, obj):
self.obj = obj
def __getitem__(self, key):
return wrap(self.obj[key])
def __getattr__(self, key):
try:
return wrap(getattr(self.obj, key))
except AttributeError:
try:
return self[key]
except KeyError:
raise AttributeError(key)
# you probably also want to proxy important list properties along like
# items(), iteritems() and __len__
class ListProxy(object):
def __init__(self, obj):
self.obj = obj
def __getitem__(self, key):
return wrap(self.obj[key])
# you probably also want to proxy important list properties along like
# __iter__ and __len__
def wrap(value):
if isinstance(value, dict):
return DictProxy(value)
if isinstance(value, (tuple, list)):
return ListProxy(value)
return value
参见https://stackoverflow.com/users/704327/michael-merickel的原始实现。
另一件需要注意的事情是,这个实现非常简单,并且没有实现您可能需要的所有方法。您需要根据需要在DictProxy或ListProxy对象上写入这些内容。
最简单的方法是使用collections.namedtuple。
我发现下面的4行代码是最漂亮的,它支持嵌套字典:
def dict_to_namedtuple(typename, data):
return namedtuple(typename, data.keys())(
*(dict_to_namedtuple(typename + '_' + k, v) if isinstance(v, dict) else v for k, v in data.items())
)
输出看起来也会很好:
>>> nt = dict_to_namedtuple('config', {
... 'path': '/app',
... 'debug': {'level': 'error', 'stream': 'stdout'}
... })
>>> print(nt)
config(path='/app', debug=config_debug(level='error', stream='stdout'))
>>> print(nt.debug.level)
'error'