我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。

例如:

>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}

应该以这样的方式访问:

>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar

我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?


当前回答

通常情况下,您希望将字典层次结构镜像到对象中,而不是列表或元组,它们通常处于最低级别。我是这样做的:

class defDictToObject(object):

    def __init__(self, myDict):
        for key, value in myDict.items():
            if type(value) == dict:
                setattr(self, key, defDictToObject(value))
            else:
                setattr(self, key, value)

所以我们这样做:

myDict = { 'a': 1,
           'b': { 
              'b1': {'x': 1,
                    'y': 2} },
           'c': ['hi', 'bar'] 
         }

并获得:

x.b.b1。* 1

X.c ['hi', 'bar']

其他回答

在2021年,使用pydantic BaseModel -将嵌套字典和嵌套json对象转换为python对象,反之亦然:

https://pydantic-docs.helpmanual.io/usage/models/

>>> class Foo(BaseModel):
...     count: int
...     size: float = None
... 
>>> 
>>> class Bar(BaseModel):
...     apple = 'x'
...     banana = 'y'
... 
>>> 
>>> class Spam(BaseModel):
...     foo: Foo
...     bars: List[Bar]
... 
>>> 
>>> m = Spam(foo={'count': 4}, bars=[{'apple': 'x1'}, {'apple': 'x2'}])

对象to dict

>>> print(m.dict())
{'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y'}]}

对象转换为JSON

>>> print(m.json())
{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}

反对的词典

>>> spam = Spam.parse_obj({'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y2'}]})
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y2')])

JSON到对象

>>> spam = Spam.parse_raw('{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}')
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y')])

这个小类从来没有给我任何问题,只是扩展它并使用copy()方法:

  import simplejson as json

  class BlindCopy(object):

    def copy(self, json_str):
        dic = json.loads(json_str)
        for k, v in dic.iteritems():
            if hasattr(self, k):
                setattr(self, k, v);

这是另一个实现:

class DictObj(object):
    def __init__(self, d):
        self.__dict__ = d

def dict_to_obj(d):
    if isinstance(d, (list, tuple)): return map(dict_to_obj, d)
    elif not isinstance(d, dict): return d
    return DictObj(dict((k, dict_to_obj(v)) for (k,v) in d.iteritems()))

[编辑]遗漏了在列表中处理字典的部分,而不仅仅是其他字典。添加修复。

为dict寻找一个简单的包装器类,支持属性样式的键访问/赋值(点表示法),我对现有选项不满意,原因如下。

数据类、pydantic等都很棒,但需要对内容进行静态定义。此外,它们不能在依赖dict的代码中替换dict,因为它们不共享相同的方法,并且不支持__getitem__()语法。

因此,我开发了MetaDict。它的行为完全类似于dict,但支持点表示法和IDE自动补全(如果对象被加载到RAM中),而没有其他解决方案的缺点和潜在的名称空间冲突。所有功能和使用示例都可以在GitHub上找到(见上面的链接)。

完全披露:我是MetaDict的作者。

我在尝试其他解决方案时遇到的缺点/限制:

Addict No key autocompletion in IDE Nested key assignment cannot be turned off Newly assigned dict objects are not converted to support attribute-style key access Shadows inbuilt type Dict Prodict No key autocompletion in IDE without defining a static schema (similar to dataclass) No recursive conversion of dict objects when embedded in list or other inbuilt iterables AttrDict No key autocompletion in IDE Converts list objects to tuple behind the scenes Munch Inbuilt methods like items(), update(), etc. can be overwritten with obj.items = [1, 2, 3] No recursive conversion of dict objects when embedded in list or other inbuilt iterables EasyDict Only strings are valid keys, but dict accepts all hashable objects as keys Inbuilt methods like items(), update(), etc. can be overwritten with obj.items = [1, 2, 3] Inbuilt methods don't behave as expected: obj.pop('unknown_key', None) raises an AttributeError

注意:我在这个stackoverflow中写了一个类似的答案,这是相关的。

有一个 名为namedtuple的集合助手,可以为你做这些:

from collections import namedtuple

d_named = namedtuple('Struct', d.keys())(*d.values())

In [7]: d_named
Out[7]: Struct(a=1, b={'c': 2}, d=['hi', {'foo': 'bar'}])

In [8]: d_named.a
Out[8]: 1