我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。

例如:

>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}

应该以这样的方式访问:

>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar

我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?


当前回答

x = type('new_dict', (object,), d)

然后再加上递归,就完成了。

编辑这是我如何实现它:

>>> d
{'a': 1, 'b': {'c': 2}, 'd': ['hi', {'foo': 'bar'}]}
>>> def obj_dic(d):
    top = type('new', (object,), d)
    seqs = tuple, list, set, frozenset
    for i, j in d.items():
        if isinstance(j, dict):
            setattr(top, i, obj_dic(j))
        elif isinstance(j, seqs):
            setattr(top, i, 
                type(j)(obj_dic(sj) if isinstance(sj, dict) else sj for sj in j))
        else:
            setattr(top, i, j)
    return top

>>> x = obj_dic(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
'bar'

其他回答

令人惊讶的是,没有人提到邦奇。这个库专门用于提供对dict对象的属性样式访问,并完全符合OP的要求。一个示范:

>>> from bunch import bunchify
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> x = bunchify(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
'bar'

Python 3的库可以在https://github.com/Infinidat/munch上获得-来源是codyzu

>>> from munch import DefaultMunch
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> obj = DefaultMunch.fromDict(d)
>>> obj.b.c
2
>>> obj.a
1
>>> obj.d[1].foo
'bar'
# Applies to Python-3 Standard Library
class Struct(object):
    def __init__(self, data):
        for name, value in data.items():
            setattr(self, name, self._wrap(value))

    def _wrap(self, value):
        if isinstance(value, (tuple, list, set, frozenset)): 
            return type(value)([self._wrap(v) for v in value])
        else:
            return Struct(value) if isinstance(value, dict) else value


# Applies to Python-2 Standard Library
class Struct(object):
    def __init__(self, data):
        for name, value in data.iteritems():
            setattr(self, name, self._wrap(value))

    def _wrap(self, value):
        if isinstance(value, (tuple, list, set, frozenset)): 
            return type(value)([self._wrap(v) for v in value])
        else:
            return Struct(value) if isinstance(value, dict) else value

可以用于任何深度的任何序列/字典/值结构。

x = type('new_dict', (object,), d)

然后再加上递归,就完成了。

编辑这是我如何实现它:

>>> d
{'a': 1, 'b': {'c': 2}, 'd': ['hi', {'foo': 'bar'}]}
>>> def obj_dic(d):
    top = type('new', (object,), d)
    seqs = tuple, list, set, frozenset
    for i, j in d.items():
        if isinstance(j, dict):
            setattr(top, i, obj_dic(j))
        elif isinstance(j, seqs):
            setattr(top, i, 
                type(j)(obj_dic(sj) if isinstance(sj, dict) else sj for sj in j))
        else:
            setattr(top, i, j)
    return top

>>> x = obj_dic(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
'bar'

如果你想让它递归的话,在之前接受的答案所做的基础上。

class FullStruct:
    def __init__(self, **kwargs):
        for key, value in kwargs.items():
            if isinstance(value, dict):
                f = FullStruct(**value)
                self.__dict__.update({key: f})
            else:
                self.__dict__.update({key: value})

最简单的方法是使用collections.namedtuple。

我发现下面的4行代码是最漂亮的,它支持嵌套字典:

def dict_to_namedtuple(typename, data):
    return namedtuple(typename, data.keys())(
        *(dict_to_namedtuple(typename + '_' + k, v) if isinstance(v, dict) else v for k, v in data.items())
    )

输出看起来也会很好:

>>> nt = dict_to_namedtuple('config', {
...     'path': '/app',
...     'debug': {'level': 'error', 'stream': 'stdout'}
... })

>>> print(nt)
config(path='/app', debug=config_debug(level='error', stream='stdout'))

>>> print(nt.debug.level)
'error'