我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。

例如:

>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}

应该以这样的方式访问:

>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar

我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?


当前回答

这是另一种将字典列表转换为对象的替代方法:

def dict2object(in_dict):
    class Struct(object):
        def __init__(self, in_dict):
            for key, value in in_dict.items():
                if isinstance(value, (list, tuple)):
                    setattr(
                        self, key,
                        [Struct(sub_dict) if isinstance(sub_dict, dict)
                         else sub_dict for sub_dict in value])
                else:
                    setattr(
                        self, key,
                        Struct(value) if isinstance(value, dict)
                        else value)
    return [Struct(sub_dict) for sub_dict in in_dict] \
        if isinstance(in_dict, list) else Struct(in_dict)

其他回答

令人惊讶的是,没有人提到邦奇。这个库专门用于提供对dict对象的属性样式访问,并完全符合OP的要求。一个示范:

>>> from bunch import bunchify
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> x = bunchify(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
'bar'

Python 3的库可以在https://github.com/Infinidat/munch上获得-来源是codyzu

>>> from munch import DefaultMunch
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> obj = DefaultMunch.fromDict(d)
>>> obj.b.c
2
>>> obj.a
1
>>> obj.d[1].foo
'bar'

这可以让你开始:

class dict2obj(object):
    def __init__(self, d):
        self.__dict__['d'] = d

    def __getattr__(self, key):
        value = self.__dict__['d'][key]
        if type(value) == type({}):
            return dict2obj(value)

        return value

d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}

x = dict2obj(d)
print x.a
print x.b.c
print x.d[1].foo

它还不适用于列表。你必须将列表包装在UserList中,并重载__getitem__来包装字典。

我有一些__getattr__没有被调用的问题,所以我构造了一个新的样式类版本:

class Struct(object):
    '''The recursive class for building and representing objects with.'''
    class NoneStruct(object):
        def __getattribute__(*args):
            return Struct.NoneStruct()

        def __eq__(self, obj):
            return obj == None

    def __init__(self, obj):
        for k, v in obj.iteritems():
            if isinstance(v, dict):
                setattr(self, k, Struct(v))
            else:
                setattr(self, k, v)

    def __getattribute__(*args):
        try:
            return object.__getattribute__(*args)
        except:            
            return Struct.NoneStruct()

    def __repr__(self):
        return '{%s}' % str(', '.join('%s : %s' % (k, repr(v)) for 
(k, v) in self.__dict__.iteritems()))

该版本还增加了一个NoneStruct,当未设置的属性被调用时返回。这允许使用None测试来查看属性是否存在。非常有用时,确切的字典输入是不知道的(设置等)。

bla = Struct({'a':{'b':1}})
print(bla.a.b)
>> 1
print(bla.a.c == None)
>> True

以下是我认为前面例子中最好的方面:

class Struct:
    """The recursive class for building and representing objects with."""

    def __init__(self, obj):
        for k, v in obj.items():
            if isinstance(v, dict):
                setattr(self, k, Struct(v))
            else:
                setattr(self, k, v)

    def __getitem__(self, val):
        return self.__dict__[val]

    def __repr__(self):
        return '{%s}' % str(', '.join('%s : %s' % (k, repr(v)) for (k, v) in self.__dict__.items()))

在2021年,使用pydantic BaseModel -将嵌套字典和嵌套json对象转换为python对象,反之亦然:

https://pydantic-docs.helpmanual.io/usage/models/

>>> class Foo(BaseModel):
...     count: int
...     size: float = None
... 
>>> 
>>> class Bar(BaseModel):
...     apple = 'x'
...     banana = 'y'
... 
>>> 
>>> class Spam(BaseModel):
...     foo: Foo
...     bars: List[Bar]
... 
>>> 
>>> m = Spam(foo={'count': 4}, bars=[{'apple': 'x1'}, {'apple': 'x2'}])

对象to dict

>>> print(m.dict())
{'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y'}]}

对象转换为JSON

>>> print(m.json())
{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}

反对的词典

>>> spam = Spam.parse_obj({'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y2'}]})
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y2')])

JSON到对象

>>> spam = Spam.parse_raw('{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}')
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y')])