我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
当前回答
以下是我认为前面例子中最好的方面:
class Struct:
"""The recursive class for building and representing objects with."""
def __init__(self, obj):
for k, v in obj.items():
if isinstance(v, dict):
setattr(self, k, Struct(v))
else:
setattr(self, k, v)
def __getitem__(self, val):
return self.__dict__[val]
def __repr__(self):
return '{%s}' % str(', '.join('%s : %s' % (k, repr(v)) for (k, v) in self.__dict__.items()))
其他回答
如果你想访问dict键作为一个对象(或作为一个dict难键),做递归,也能够更新原来的dict,你可以这样做:
class Dictate(object):
"""Object view of a dict, updating the passed in dict when values are set
or deleted. "Dictate" the contents of a dict...: """
def __init__(self, d):
# since __setattr__ is overridden, self.__dict = d doesn't work
object.__setattr__(self, '_Dictate__dict', d)
# Dictionary-like access / updates
def __getitem__(self, name):
value = self.__dict[name]
if isinstance(value, dict): # recursively view sub-dicts as objects
value = Dictate(value)
return value
def __setitem__(self, name, value):
self.__dict[name] = value
def __delitem__(self, name):
del self.__dict[name]
# Object-like access / updates
def __getattr__(self, name):
return self[name]
def __setattr__(self, name, value):
self[name] = value
def __delattr__(self, name):
del self[name]
def __repr__(self):
return "%s(%r)" % (type(self).__name__, self.__dict)
def __str__(self):
return str(self.__dict)
使用示例:
d = {'a': 'b', 1: 2}
dd = Dictate(d)
assert dd.a == 'b' # Access like an object
assert dd[1] == 2 # Access like a dict
# Updates affect d
dd.c = 'd'
assert d['c'] == 'd'
del dd.a
del dd[1]
# Inner dicts are mapped
dd.e = {}
dd.e.f = 'g'
assert dd['e'].f == 'g'
assert d == {'c': 'd', 'e': {'f': 'g'}}
我不满意那些被标记和点赞的答案,所以这里有一个简单而通用的解决方案,用于将json风格的嵌套数据结构(由字典和列表组成)转换为普通对象的层次结构:
# tested in: Python 3.8
from collections import abc
from typings import Any, Iterable, Mapping, Union
class DataObject:
def __repr__(self):
return str({k: v for k, v in vars(self).items()})
def data_to_object(data: Union[Mapping[str, Any], Iterable]) -> object:
"""
Example
-------
>>> data = {
... "name": "Bob Howard",
... "positions": [{"department": "ER", "manager_id": 13}],
... }
... data_to_object(data).positions[0].manager_id
13
"""
if isinstance(data, abc.Mapping):
r = DataObject()
for k, v in data.items():
if type(v) is dict or type(v) is list:
setattr(r, k, data_to_object(v))
else:
setattr(r, k, v)
return r
elif isinstance(data, abc.Iterable):
return [data_to_object(e) for e in data]
else:
return data
I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way too slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.
class DictProxy(object):
def __init__(self, obj):
self.obj = obj
def __getitem__(self, key):
return wrap(self.obj[key])
def __getattr__(self, key):
try:
return wrap(getattr(self.obj, key))
except AttributeError:
try:
return self[key]
except KeyError:
raise AttributeError(key)
# you probably also want to proxy important list properties along like
# items(), iteritems() and __len__
class ListProxy(object):
def __init__(self, obj):
self.obj = obj
def __getitem__(self, key):
return wrap(self.obj[key])
# you probably also want to proxy important list properties along like
# __iter__ and __len__
def wrap(value):
if isinstance(value, dict):
return DictProxy(value)
if isinstance(value, (tuple, list)):
return ListProxy(value)
return value
参见https://stackoverflow.com/users/704327/michael-merickel的原始实现。
另一件需要注意的事情是,这个实现非常简单,并且没有实现您可能需要的所有方法。您需要根据需要在DictProxy或ListProxy对象上写入这些内容。
你可以使用一个自定义对象钩子来利用标准库的json模块:
import json
class obj(object):
def __init__(self, dict_):
self.__dict__.update(dict_)
def dict2obj(d):
return json.loads(json.dumps(d), object_hook=obj)
使用示例:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ['hi', {'foo': 'bar'}]}
>>> o = dict2obj(d)
>>> o.a
1
>>> o.b.c
2
>>> o.d[0]
u'hi'
>>> o.d[1].foo
u'bar'
而且它不像namedtuple那样是严格只读的,也就是说,你可以改变值-而不是结构:
>>> o.b.c = 3
>>> o.b.c
3
下面是执行SilentGhost最初建议的另一种方法:
def dict2obj(d):
if isinstance(d, dict):
n = {}
for item in d:
if isinstance(d[item], dict):
n[item] = dict2obj(d[item])
elif isinstance(d[item], (list, tuple)):
n[item] = [dict2obj(elem) for elem in d[item]]
else:
n[item] = d[item]
return type('obj_from_dict', (object,), n)
else:
return d