我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。
例如:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
应该以这样的方式访问:
>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar
我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?
当前回答
通过PyPI包attrdict可以很容易地得到问题的精确解。关于这个包的一个有趣的事实是,字典可以作为键或属性访问。这就是解决方案
from attrdict import AttrDict
d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
x = AttrDict(d)
print(x.a, x['a'])
print(x.b.c, x['b']['c'])
print(x.d[1].foo, x['d'][1]['foo'])
输出如下(显然没有错误)-
1 1
2 2
bar bar
注意:它于2019年2月2日首次发布,这意味着在提出这个问题时,这个第三方pypi包还不存在。但是如果有人现在想通过键或属性访问dict值,这个包肯定可以像魔术一样帮助你,只需要一行代码。
其他回答
你可以使用一个自定义对象钩子来利用标准库的json模块:
import json
class obj(object):
def __init__(self, dict_):
self.__dict__.update(dict_)
def dict2obj(d):
return json.loads(json.dumps(d), object_hook=obj)
使用示例:
>>> d = {'a': 1, 'b': {'c': 2}, 'd': ['hi', {'foo': 'bar'}]}
>>> o = dict2obj(d)
>>> o.a
1
>>> o.b.c
2
>>> o.d[0]
u'hi'
>>> o.d[1].foo
u'bar'
而且它不像namedtuple那样是严格只读的,也就是说,你可以改变值-而不是结构:
>>> o.b.c = 3
>>> o.b.c
3
为dict寻找一个简单的包装器类,支持属性样式的键访问/赋值(点表示法),我对现有选项不满意,原因如下。
数据类、pydantic等都很棒,但需要对内容进行静态定义。此外,它们不能在依赖dict的代码中替换dict,因为它们不共享相同的方法,并且不支持__getitem__()语法。
因此,我开发了MetaDict。它的行为完全类似于dict,但支持点表示法和IDE自动补全(如果对象被加载到RAM中),而没有其他解决方案的缺点和潜在的名称空间冲突。所有功能和使用示例都可以在GitHub上找到(见上面的链接)。
完全披露:我是MetaDict的作者。
我在尝试其他解决方案时遇到的缺点/限制:
Addict No key autocompletion in IDE Nested key assignment cannot be turned off Newly assigned dict objects are not converted to support attribute-style key access Shadows inbuilt type Dict Prodict No key autocompletion in IDE without defining a static schema (similar to dataclass) No recursive conversion of dict objects when embedded in list or other inbuilt iterables AttrDict No key autocompletion in IDE Converts list objects to tuple behind the scenes Munch Inbuilt methods like items(), update(), etc. can be overwritten with obj.items = [1, 2, 3] No recursive conversion of dict objects when embedded in list or other inbuilt iterables EasyDict Only strings are valid keys, but dict accepts all hashable objects as keys Inbuilt methods like items(), update(), etc. can be overwritten with obj.items = [1, 2, 3] Inbuilt methods don't behave as expected: obj.pop('unknown_key', None) raises an AttributeError
注意:我在这个stackoverflow中写了一个类似的答案,这是相关的。
我的字典是这样的:
addr_bk = {
'person': [
{'name': 'Andrew', 'id': 123, 'email': 'andrew@mailserver.com',
'phone': [{'type': 2, 'number': '633311122'},
{'type': 0, 'number': '97788665'}]
},
{'name': 'Tom', 'id': 456,
'phone': [{'type': 0, 'number': '91122334'}]},
{'name': 'Jack', 'id': 7788, 'email': 'jack@gmail.com'}
]
}
可以看到,我已经嵌套了字典和字典列表。 这是因为addr_bk是从使用lwpb.codec转换为python dict的协议缓冲区数据解码的。有可选字段(例如email =>,其中键可能不可用)和重复字段(例如phone =>转换为dict列表)。
我尝试了上述所有建议的解决方案。有些不能很好地处理嵌套字典。其他的则不容易打印对象的详细信息。
只有Dawie Strauss的dic2obj (dict)解决方案最有效。
我已经增强了一点,当找不到钥匙时处理:
# Work the best, with nested dictionaries & lists! :)
# Able to print out all items.
class dict2obj_new(dict):
def __init__(self, dict_):
super(dict2obj_new, self).__init__(dict_)
for key in self:
item = self[key]
if isinstance(item, list):
for idx, it in enumerate(item):
if isinstance(it, dict):
item[idx] = dict2obj_new(it)
elif isinstance(item, dict):
self[key] = dict2obj_new(item)
def __getattr__(self, key):
# Enhanced to handle key not found.
if self.has_key(key):
return self[key]
else:
return None
然后,我用:
# Testing...
ab = dict2obj_new(addr_bk)
for person in ab.person:
print "Person ID:", person.id
print " Name:", person.name
# Check if optional field is available before printing.
if person.email:
print " E-mail address:", person.email
# Check if optional field is available before printing.
if person.phone:
for phone_number in person.phone:
if phone_number.type == codec.enums.PhoneType.MOBILE:
print " Mobile phone #:",
elif phone_number.type == codec.enums.PhoneType.HOME:
print " Home phone #:",
else:
print " Work phone #:",
print phone_number.number
我不满意那些被标记和点赞的答案,所以这里有一个简单而通用的解决方案,用于将json风格的嵌套数据结构(由字典和列表组成)转换为普通对象的层次结构:
# tested in: Python 3.8
from collections import abc
from typings import Any, Iterable, Mapping, Union
class DataObject:
def __repr__(self):
return str({k: v for k, v in vars(self).items()})
def data_to_object(data: Union[Mapping[str, Any], Iterable]) -> object:
"""
Example
-------
>>> data = {
... "name": "Bob Howard",
... "positions": [{"department": "ER", "manager_id": 13}],
... }
... data_to_object(data).positions[0].manager_id
13
"""
if isinstance(data, abc.Mapping):
r = DataObject()
for k, v in data.items():
if type(v) is dict or type(v) is list:
setattr(r, k, data_to_object(v))
else:
setattr(r, k, v)
return r
elif isinstance(data, abc.Iterable):
return [data_to_object(e) for e in data]
else:
return data
更新:在Python 2.6及以上版本中,考虑namedtuple数据结构是否适合您的需求:
>>> from collections import namedtuple
>>> MyStruct = namedtuple('MyStruct', 'a b d')
>>> s = MyStruct(a=1, b={'c': 2}, d=['hi'])
>>> s
MyStruct(a=1, b={'c': 2}, d=['hi'])
>>> s.a
1
>>> s.b
{'c': 2}
>>> s.c
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'MyStruct' object has no attribute 'c'
>>> s.d
['hi']
替代方案(原答案内容)为:
class Struct:
def __init__(self, **entries):
self.__dict__.update(entries)
然后,你可以使用:
>>> args = {'a': 1, 'b': 2}
>>> s = Struct(**args)
>>> s
<__main__.Struct instance at 0x01D6A738>
>>> s.a
1
>>> s.b
2