我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。

例如:

>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}

应该以这样的方式访问:

>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar

我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?


当前回答

我不满意那些被标记和点赞的答案,所以这里有一个简单而通用的解决方案,用于将json风格的嵌套数据结构(由字典和列表组成)转换为普通对象的层次结构:

# tested in: Python 3.8
from collections import abc
from typings import Any, Iterable, Mapping, Union

class DataObject:
    def __repr__(self):
        return str({k: v for k, v in vars(self).items()})

def data_to_object(data: Union[Mapping[str, Any], Iterable]) -> object:
    """
    Example
    -------
    >>> data = {
    ...     "name": "Bob Howard",
    ...     "positions": [{"department": "ER", "manager_id": 13}],
    ... }
    ... data_to_object(data).positions[0].manager_id
    13
    """
    if isinstance(data, abc.Mapping):
        r = DataObject()
        for k, v in data.items():
            if type(v) is dict or type(v) is list:
                setattr(r, k, data_to_object(v))
            else:
                setattr(r, k, v)
        return r
    elif isinstance(data, abc.Iterable):
        return [data_to_object(e) for e in data]
    else:
        return data

其他回答

这个怎么样:

from functools import partial
d2o=partial(type, "d2o", ())

然后可以这样使用:

>>> o=d2o({"a" : 5, "b" : 3})
>>> print o.a
5
>>> print o.b
3

这个小类从来没有给我任何问题,只是扩展它并使用copy()方法:

  import simplejson as json

  class BlindCopy(object):

    def copy(self, json_str):
        dic = json.loads(json_str)
        for k, v in dic.iteritems():
            if hasattr(self, k):
                setattr(self, k, v);

在2021年,使用pydantic BaseModel -将嵌套字典和嵌套json对象转换为python对象,反之亦然:

https://pydantic-docs.helpmanual.io/usage/models/

>>> class Foo(BaseModel):
...     count: int
...     size: float = None
... 
>>> 
>>> class Bar(BaseModel):
...     apple = 'x'
...     banana = 'y'
... 
>>> 
>>> class Spam(BaseModel):
...     foo: Foo
...     bars: List[Bar]
... 
>>> 
>>> m = Spam(foo={'count': 4}, bars=[{'apple': 'x1'}, {'apple': 'x2'}])

对象to dict

>>> print(m.dict())
{'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y'}]}

对象转换为JSON

>>> print(m.json())
{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}

反对的词典

>>> spam = Spam.parse_obj({'foo': {'count': 4, 'size': None}, 'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y2'}]})
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y2')])

JSON到对象

>>> spam = Spam.parse_raw('{"foo": {"count": 4, "size": null}, "bars": [{"apple": "x1", "banana": "y"}, {"apple": "x2", "banana": "y"}]}')
>>> spam
Spam(foo=Foo(count=4, size=None), bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y')])

下面的代码来自这里,适用于嵌套字典和ide,如VS code能够提示现有的属性:

class Struct:
    def __init__(self, **kwargs):
        for key, value in kwargs.items():
            if isinstance(value, dict):
                self.__dict__[key] = Struct(**value)
            else:
                self.__dict__[key] = value


my_dict = {
    'name': 'bobbyhadz',
    'address': {
        'country': 'Country A',
        'city': 'City A',
        'codes': [1, 2, 3]
    },
}

obj = Struct(**my_dict)

如果您想了解如何加载YAML文件并将其转换为Python对象,请参阅以下要点。

这是另一个实现:

class DictObj(object):
    def __init__(self, d):
        self.__dict__ = d

def dict_to_obj(d):
    if isinstance(d, (list, tuple)): return map(dict_to_obj, d)
    elif not isinstance(d, dict): return d
    return DictObj(dict((k, dict_to_obj(v)) for (k,v) in d.iteritems()))

[编辑]遗漏了在列表中处理字典的部分,而不仅仅是其他字典。添加修复。