假设您在Java中有一个链表结构。它由节点组成:

class Node {
    Node next;
    // some user data
}

每个节点都指向下一个节点,除了最后一个节点,它的next为空。假设有一种可能性,列表可以包含一个循环-即最后的节点,而不是有一个空值,有一个引用到列表中它之前的一个节点。

最好的写作方式是什么

boolean hasLoop(Node first)

如果给定的节点是带有循环的列表的第一个,则返回true,否则返回false ?你怎么能写出一个常数的空间和合理的时间呢?

下面是一个带有循环的列表的图片:


当前回答

//链表查找循环函数

int findLoop(struct Node* head)
{
    struct Node* slow = head, *fast = head;
    while(slow && fast && fast->next)
    {
        slow = slow->next;
        fast = fast->next->next;
        if(slow == fast)
            return 1;
    }
 return 0;
}

其他回答

public boolean isCircular() {

    if (head == null)
        return false;

    Node temp1 = head;
    Node temp2 = head;

    try {
        while (temp2.next != null) {

            temp2 = temp2.next.next.next;
            temp1 = temp1.next;

            if (temp1 == temp2 || temp1 == temp2.next) 
                return true;    

        }
    } catch (NullPointerException ex) {
        return false;

    }

    return false;

}
func checkLoop(_ head: LinkedList) -> Bool {
    var curr = head
    var prev = head
    
    while curr.next != nil, curr.next!.next != nil {
        curr = (curr.next?.next)!
        prev = prev.next!
        
        if curr === prev {
            return true
        }
    }
    
    return false
}

比弗洛伊德的算法好

Richard Brent描述了一种替代周期检测算法,它很像兔子和乌龟(弗洛伊德周期),除了这里的慢节点不移动,但随后会以固定的间隔“传送”到快节点的位置。

该描述可在布伦特的周期检测算法(瞬移海龟)。布伦特声称他的算法比弗洛伊德的循环算法快24%到36%。 O(n)时间复杂度,O(1)空间复杂度。

public static boolean hasLoop(Node root) {
    if (root == null) return false;
    
    Node slow = root, fast = root;
    int taken = 0, limit = 2;
    
    while (fast.next != null) {
        fast = fast.next;
        taken++;
        if (slow == fast) return true;
        
        if (taken == limit) {
            taken = 0;
            limit <<= 1;    // equivalent to limit *= 2;
            slow = fast;    // teleporting the turtle (to the hare's position) 
        }
    }
    return false;
}

这是我的可运行代码。

我所做的是通过使用三个临时节点(空间复杂度O(1))来对链表进行尊崇,以跟踪链接。

有趣的是,这样做有助于检测链表中的循环,因为当你向前移动时,你不期望回到起点(根节点),其中一个临时节点应该为null,除非你有一个循环,这意味着它指向根节点。

该算法的时间复杂度为O(n),空间复杂度为O(1)。

下面是链表的类节点:

public class LinkedNode{
    public LinkedNode next;
}

下面是带有三个节点的简单测试用例的主要代码,最后一个节点指向第二个节点:

    public static boolean checkLoopInLinkedList(LinkedNode root){

        if (root == null || root.next == null) return false;

        LinkedNode current1 = root, current2 = root.next, current3 = root.next.next;
        root.next = null;
        current2.next = current1;

        while(current3 != null){
            if(current3 == root) return true;

            current1 = current2;
            current2 = current3;
            current3 = current3.next;

            current2.next = current1;
        }
        return false;
    }

下面是一个简单的三个节点的测试用例,最后一个节点指向第二个节点:

public class questions{
    public static void main(String [] args){

        LinkedNode n1 = new LinkedNode();
        LinkedNode n2 = new LinkedNode();
        LinkedNode n3 = new LinkedNode();
        n1.next = n2;
        n2.next = n3;
        n3.next = n2;

        System.out.print(checkLoopInLinkedList(n1));
    }
}

乌龟和兔子

看看波拉德的算法。这不是完全相同的问题,但也许你会理解其中的逻辑,并将其应用于链表。

(如果你很懒,你可以看看周期检测——看看关于乌龟和兔子的那部分。)

这只需要线性时间和2个额外的指针。

在Java中:

boolean hasLoop( Node first ) {
    if ( first == null ) return false;

    Node turtle = first;
    Node hare = first;

    while ( hare.next != null && hare.next.next != null ) {
         turtle = turtle.next;
         hare = hare.next.next;

         if ( turtle == hare ) return true;
    }

    return false;
}

(大多数解决方案不会同时检查next和next。接下来是null。此外,因为乌龟总是在后面,你不需要检查它是否为空——兔子已经检查过了。)