假设您在Java中有一个链表结构。它由节点组成:

class Node {
    Node next;
    // some user data
}

每个节点都指向下一个节点,除了最后一个节点,它的next为空。假设有一种可能性,列表可以包含一个循环-即最后的节点,而不是有一个空值,有一个引用到列表中它之前的一个节点。

最好的写作方式是什么

boolean hasLoop(Node first)

如果给定的节点是带有循环的列表的第一个,则返回true,否则返回false ?你怎么能写出一个常数的空间和合理的时间呢?

下面是一个带有循环的列表的图片:


当前回答

如果链表结构实现了java.util.List. list。我们可以使用列表大小来跟踪我们在列表中的位置。

我们可以遍历节点,将当前节点的位置与上一个节点的位置进行比较。如果我们当前的位置超过了上一个位置,我们就检测到列表在某个地方有一个循环。

这种解决方案需要恒定的空间,但随着列表大小的增加,完成所需的时间会线性增加。


class LinkedList implements List {
    Node first;
    int listSize;
    
    @Override
    int size() {
        return listSize;
    }

    [..]

    boolean hasLoop() {
        int lastPosition = size();
        int currentPosition = 1;
        Node next = first;
        while(next != null) {
           if (currentPosition > lastPosition) return true;
           next = next.next;
           currentPosition++;
        }
        return false;
    }
}

或作为一种实用工具:

static boolean hasLoop(int size, Node first) {
    int lastPosition = size;
    int currentPosition = 1;
    Node next = first;
    while(next != null) {
       if (currentPosition > lastPosition) return true;
       next = next.next;
       currentPosition++;
    }
    return false;
}

其他回答

//链表查找循环函数

int findLoop(struct Node* head)
{
    struct Node* slow = head, *fast = head;
    while(slow && fast && fast->next)
    {
        slow = slow->next;
        fast = fast->next->next;
        if(slow == fast)
            return 1;
    }
 return 0;
}

我可能会非常晚和新的处理这个线程。但还是. .

为什么不能将节点的地址和“下一个”节点指向存储在表中

如果我们可以这样做

node present: (present node addr) (next node address)

node 1: addr1: 0x100 addr2: 0x200 ( no present node address till this point had 0x200)
node 2: addr2: 0x200 addr3: 0x300 ( no present node address till this point had 0x300)
node 3: addr3: 0x300 addr4: 0x400 ( no present node address till this point had 0x400)
node 4: addr4: 0x400 addr5: 0x500 ( no present node address till this point had 0x500)
node 5: addr5: 0x500 addr6: 0x600 ( no present node address till this point had 0x600)
node 6: addr6: 0x600 addr4: 0x400 ( ONE present node address till this point had 0x400)

这样就形成了一个循环。

你可以使用弗洛伊德的周期寻找算法,也被称为乌龟和野兔算法。 其思想是对列表有两个引用,并以不同的速度移动它们。一个向前移动1个节点,另一个向前移动2个节点。

如果链表有一个循环 一定会见面的。 或者 这两个引用(或下一个) 将变为null。

实现算法的Java函数:

boolean hasLoop(Node first) {

    if(first == null) // list does not exist..so no loop either
        return false;

    Node slow, fast; // create two references.

    slow = fast = first; // make both refer to the start of the list

    while(true) {

        slow = slow.next;          // 1 hop

        if(fast.next != null)
            fast = fast.next.next; // 2 hops
        else
            return false;          // next node null => no loop

        if(slow == null || fast == null) // if either hits null..no loop
            return false;

        if(slow == fast) // if the two ever meet...we must have a loop
            return true;
    }
}

这种方法有空间开销,但实现更简单:

循环可以通过在Map中存储节点来标识。在放置节点之前;检查节点是否已经存在。如果节点已经存在于映射中,则意味着链表有循环。

public boolean loopDetector(Node<E> first) {  
       Node<E> t = first;  
       Map<Node<E>, Node<E>> map = new IdentityHashMap<Node<E>, Node<E>>();  
       while (t != null) {  
            if (map.containsKey(t)) {  
                 System.out.println(" duplicate Node is --" + t  
                           + " having value :" + t.data);  

                 return true;  
            } else {  
                 map.put(t, t);  
            }  
            t = t.next;  
       }  
       return false;  
  }  

比弗洛伊德的算法好

Richard Brent描述了一种替代周期检测算法,它很像兔子和乌龟(弗洛伊德周期),除了这里的慢节点不移动,但随后会以固定的间隔“传送”到快节点的位置。

该描述可在布伦特的周期检测算法(瞬移海龟)。布伦特声称他的算法比弗洛伊德的循环算法快24%到36%。 O(n)时间复杂度,O(1)空间复杂度。

public static boolean hasLoop(Node root) {
    if (root == null) return false;
    
    Node slow = root, fast = root;
    int taken = 0, limit = 2;
    
    while (fast.next != null) {
        fast = fast.next;
        taken++;
        if (slow == fast) return true;
        
        if (taken == limit) {
            taken = 0;
            limit <<= 1;    // equivalent to limit *= 2;
            slow = fast;    // teleporting the turtle (to the hare's position) 
        }
    }
    return false;
}