我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

下面是另一个用于计时代码的上下文管理器-

用法:

from benchmark import benchmark

with benchmark("Test 1+1"):
    1+1
=>
Test 1+1 : 1.41e-06 seconds

或者,如果您需要时间值

with benchmark("Test 1+1") as b:
    1+1
print(b.time)
=>
Test 1+1 : 7.05e-07 seconds
7.05233786763e-07

基准.py:

from timeit import default_timer as timer

class benchmark(object):

    def __init__(self, msg, fmt="%0.3g"):
        self.msg = msg
        self.fmt = fmt

    def __enter__(self):
        self.start = timer()
        return self

    def __exit__(self, *args):
        t = timer() - self.start
        print(("%s : " + self.fmt + " seconds") % (self.msg, t))
        self.time = t

改编自http://dabeaz.blogspot.fr/2010/02/context-manager-for-timing-benchmarks.html

其他回答

时间也可以通过%timeit魔法函数测量,如下所示:

%timeit -t -n 1 print("hello")

n 1仅用于运行功能1次。

import time

def getElapsedTime(startTime, units):
    elapsedInSeconds = time.time() - startTime
    if units == 'sec':
        return elapsedInSeconds
    if units == 'min':
        return elapsedInSeconds/60
    if units == 'hour':
        return elapsedInSeconds/(60*60)

除了ipython中的%timeit之外,您还可以使用%%timeit进行多行代码片段:

In [1]: %%timeit
   ...: complex_func()
   ...: 2 + 2 == 5
   ...:
   ...:

1 s ± 1.93 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

同样,它也可以以同样的方式在jupyter笔记本中使用,只需将magic%%timeit放在单元格的开头。

我参加聚会已经很晚了,但这种方法以前没有涉及过。当我们想要手动对某段代码进行基准测试时,我们可能需要首先找出哪些类方法占用了执行时间,这有时并不明显。我构建了以下元类来解决这个问题:

from __future__ import annotations

from functools import wraps
from time import time
from typing import Any, Callable, TypeVar, cast

F = TypeVar('F', bound=Callable[..., Any])


def timed_method(func: F, prefix: str | None = None) -> F:
    prefix = (prefix + ' ') if prefix else ''

    @wraps(func)
    def inner(*args, **kwargs):  # type: ignore
        start = time()
        try:
            ret = func(*args, **kwargs)
        except BaseException:
            print(f'[ERROR] {prefix}{func.__qualname__}: {time() - start}')
            raise
        
        print(f'{prefix}{func.__qualname__}: {time() - start}')
        return ret

    return cast(F, inner)


class TimedClass(type):
    def __new__(
        cls: type[TimedClass],
        name: str,
        bases: tuple[type[type], ...],
        attrs: dict[str, Any],
        **kwargs: Any,
    ) -> TimedClass:
        for name, attr in attrs.items():
            if isinstance(attr, (classmethod, staticmethod)):
                attrs[name] = type(attr)(timed_method(attr.__func__))
            elif isinstance(attr, property):
                attrs[name] = property(
                    timed_method(attr.fget, 'get') if attr.fget is not None else None,
                    timed_method(attr.fset, 'set') if attr.fset is not None else None,
                    timed_method(attr.fdel, 'del') if attr.fdel is not None else None,
                )
            elif callable(attr):
                attrs[name] = timed_method(attr)

        return super().__new__(cls, name, bases, attrs)

它允许如下使用:

class MyClass(metaclass=TimedClass):
    def foo(self): 
        print('foo')
    
    @classmethod
    def bar(cls): 
        print('bar')
    
    @staticmethod
    def baz(): 
        print('baz')
    
    @property
    def prop(self): 
        print('prop')
    
    @prop.setter
    def prop(self, v): 
        print('fset')
    
    @prop.deleter
    def prop(self): 
        print('fdel')


c = MyClass()

c.foo()
c.bar()
c.baz()
c.prop
c.prop = 2
del c.prop

MyClass.bar()
MyClass.baz()

它打印:

foo
MyClass.foo: 1.621246337890625e-05
bar
MyClass.bar: 4.5299530029296875e-06
baz
MyClass.baz: 4.291534423828125e-06
prop
get MyClass.prop: 3.814697265625e-06
fset
set MyClass.prop: 3.5762786865234375e-06
fdel
del MyClass.prop: 3.5762786865234375e-06
bar
MyClass.bar: 3.814697265625e-06
baz
MyClass.baz: 4.0531158447265625e-06

它可以与其他答案相结合,以更精确的方式代替time.time。

以下是一个答案,使用:

对代码片段进行计时的简洁上下文管理器time.perf_counter()计算时间增量。与time.time()相反,它是不可调整的(sysadmin和守护程序都不能更改其值),因此应该首选它(参见文档)python3.10+(因为键入,但可以很容易地适应以前的版本)

import time
from contextlib import contextmanager
from typing import Iterator

@contextmanager
def time_it() -> Iterator[None]:
    tic: float = time.perf_counter()
    try:
        yield
    finally:
        toc: float = time.perf_counter()
        print(f"Computation time = {1000*(toc - tic):.3f}ms")

如何使用它的示例:

# Example: vector dot product computation
with time_it():
    A = B = range(1000000)
    dot = sum(a*b for a,b in zip(A,B))
# Computation time = 95.353ms

附录

import time

# to check adjustability
assert time.get_clock_info('time').adjustable
assert time.get_clock_info('perf_counter').adjustable is False