我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

下面是另一个用于计时代码的上下文管理器-

用法:

from benchmark import benchmark

with benchmark("Test 1+1"):
    1+1
=>
Test 1+1 : 1.41e-06 seconds

或者,如果您需要时间值

with benchmark("Test 1+1") as b:
    1+1
print(b.time)
=>
Test 1+1 : 7.05e-07 seconds
7.05233786763e-07

基准.py:

from timeit import default_timer as timer

class benchmark(object):

    def __init__(self, msg, fmt="%0.3g"):
        self.msg = msg
        self.fmt = fmt

    def __enter__(self):
        self.start = timer()
        return self

    def __exit__(self, *args):
        t = timer() - self.start
        print(("%s : " + self.fmt + " seconds") % (self.msg, t))
        self.time = t

改编自http://dabeaz.blogspot.fr/2010/02/context-manager-for-timing-benchmarks.html

其他回答

这是另一种方法:

>> from pytictoc import TicToc
>> t = TicToc() # create TicToc instance
>> t.tic() # Start timer
>> # do something
>> t.toc() # Print elapsed time
Elapsed time is 2.612231 seconds.

与传统方式相比:

>> from time import time
>> t1 = time()
>> # do something
>> t2 = time()
>> elapsed = t2 - t1
>> print('Elapsed time is %f seconds.' % elapsed)
Elapsed time is 2.612231 seconds.

安装:

pip install pytictoc

有关详细信息,请参阅PyPi页面。

如果您想方便地对函数计时,可以使用一个简单的修饰符:

import time

def timing_decorator(func):
    def wrapper(*args, **kwargs):
        start = time.perf_counter()
        original_return_val = func(*args, **kwargs)
        end = time.perf_counter()
        print("time elapsed in ", func.__name__, ": ", end - start, sep='')
        return original_return_val

    return wrapper

您可以在您希望计时的函数上使用它,如下所示:

@timing_decorator
def function_to_time():
    time.sleep(1)

function_to_time()

无论何时调用function_to_time,它都会打印所用的时间和正在计时的函数的名称。

计算操作持续时间的最简单方法:

import time

start_time = time.monotonic()

<operations, programs>

print('seconds: ', time.monotonic() - start_time)

这里有官方文件。

使用timeit.default_timer而不是timeit.timeit。前者自动提供您的平台和Python版本上可用的最佳时钟:

from timeit import default_timer as timer

start = timer()
# ...
end = timer()
print(end - start) # Time in seconds, e.g. 5.38091952400282

timeit.default_timer被分配给time.time()或time.clock(),具体取决于操作系统。在Python 3.3+default_timer上,所有平台上都有time.perf_counter()。请参见Python-time.cclock()与time.time()-精度?

另请参见:

正在优化代码如何优化速度

(仅使用Ipython)您可以使用%timeit来测量平均处理时间:

def foo():
    print "hello"

然后:

%timeit foo()

结果如下:

10000 loops, best of 3: 27 µs per loop