我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

除了ipython中的%timeit之外,您还可以使用%%timeit进行多行代码片段:

In [1]: %%timeit
   ...: complex_func()
   ...: 2 + 2 == 5
   ...:
   ...:

1 s ± 1.93 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

同样,它也可以以同样的方式在jupyter笔记本中使用,只需将magic%%timeit放在单元格的开头。

其他回答

使用探查器模块。它提供了非常详细的概况。

import profile
profile.run('main()')

它输出类似于:

          5 function calls in 0.047 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.000    0.000 :0(exec)
        1    0.047    0.047    0.047    0.047 :0(setprofile)
        1    0.000    0.000    0.000    0.000 <string>:1(<module>)
        0    0.000             0.000          profile:0(profiler)
        1    0.000    0.000    0.047    0.047 profile:0(main())
        1    0.000    0.000    0.000    0.000 two_sum.py:2(twoSum)

我发现它很有启发性。

您可以使用Benchmark Timer(免责声明:我是作者):

基准计时器使用BenchmarkTimer类来测量执行某段代码所需的时间。这比内置的timeit函数具有更大的灵活性,并且与其他代码在相同的范围内运行。安装pip安装git+https://github.com/michaelitvin/benchmark-timer.git@main#egg=基准计时器用法单次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MySimpleCode”)作为tm,tm.single_ieration():睡眠时间(.3)输出:正在对标MySimpleCode。。。MySimpleCode基准:n_iters=1 avg=0.300881s std=0.000000s range=[0.3000881s ~ 0.300881s]多次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MyTimedCode”,print_iters=True)作为tm:对于tm迭代中的timing_iteration(n=5,预热=2):定时重复:睡眠时间(.1)打印(“\n===============\n”)print(“定时列表:”,列表(tm.timenings.values()))输出:正在对标MyTimedCode。。。[MyTimedCode]iter=0耗时0.099755s(预热)[MyTimedCode]iter=1耗时0.100476秒(预热)[MyTimedCode]iter=2耗时0.100189秒[MyTimedCode]iter=3耗时0.099900s[MyTimedCode]iter=4耗时0.100888秒MyTimedCode基准:n_iters=3 avg=0.100326s std=0.000414s range=[0.099900s ~ 0.100888s]===================时间列表:[0.1001885000000001,0.09990049999999995,0.10088760000000008]

给定要计时的函数,

测试.py:

def foo(): 
    # print "hello"   
    return "hello"

使用timeit的最简单方法是从命令行调用它:

% python -mtimeit -s'import test' 'test.foo()'
1000000 loops, best of 3: 0.254 usec per loop

不要尝试使用time.time或time.clock(天真地)来比较函数的速度。他们会给出误导性的结果。

PS.不要将打印语句放在您希望计时的函数中;否则测量的时间将取决于终端的速度。

如果您想方便地对函数计时,可以使用一个简单的修饰符:

import time

def timing_decorator(func):
    def wrapper(*args, **kwargs):
        start = time.perf_counter()
        original_return_val = func(*args, **kwargs)
        end = time.perf_counter()
        print("time elapsed in ", func.__name__, ": ", end - start, sep='')
        return original_return_val

    return wrapper

您可以在您希望计时的函数上使用它,如下所示:

@timing_decorator
def function_to_time():
    time.sleep(1)

function_to_time()

无论何时调用function_to_time,它都会打印所用的时间和正在计时的函数的名称。

timeit模块适合对一小段Python代码进行计时。它至少可以三种形式使用:

1-作为命令行模块

python2 -m timeit 'for i in xrange(10): oct(i)' 

2-对于短代码,将其作为参数传递。

import timeit
timeit.Timer('for i in xrange(10): oct(i)').timeit()

3-对于较长的代码,如:

import timeit
code_to_test = """
a = range(100000)
b = []
for i in a:
    b.append(i*2)
"""
elapsed_time = timeit.timeit(code_to_test, number=100)/100
print(elapsed_time)