我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

如何测量两次操作之间的时间。比较两次操作的时间。

import time

b = (123*321)*123
t1 = time.time()

c = ((9999^123)*321)^123
t2 = time.time()

print(t2-t1)

7.987022399902344e-05

其他回答

下面是一个返回“hh:mm:ss”字符串的小型计时器类:

class Timer:
  def __init__(self):
    self.start = time.time()

  def restart(self):
    self.start = time.time()

  def get_time_hhmmss(self):
    end = time.time()
    m, s = divmod(end - self.start, 60)
    h, m = divmod(m, 60)
    time_str = "%02d:%02d:%02d" % (h, m, s)
    return time_str

用法:

# Start timer
my_timer = Timer()

# ... do something

# Get time string:
time_hhmmss = my_timer.get_time_hhmmss()
print("Time elapsed: %s" % time_hhmmss )

# ... use the timer again
my_timer.restart()

# ... do something

# Get time:
time_hhmmss = my_timer.get_time_hhmmss()

# ... etc

仅Python 3:

由于从Python 3.3开始,time.cclock()已被弃用,因此您将希望使用time.perf_counter()进行系统范围的计时,或使用time.process_time()进行进程范围的计时(就像您以前使用time.cclok()的方式一样):

import time

t = time.process_time()
#do some stuff
elapsed_time = time.process_time() - t

新函数process_time将不包括睡眠期间经过的时间。

以下是我在阅读了许多好答案以及其他几篇文章之后的发现。

首先,如果你在timeit和time.time之间进行辩论,timeit有两个优点:

timeit选择操作系统和Python版本上可用的最佳计时器。然而,timeit禁用垃圾收集,这不是您可能想要或不想要的。

现在的问题是,时间并不是那么简单,因为它需要设置,当你有大量的导入时,事情会变得很糟糕。理想情况下,您只需要一个装饰器或使用块和度量时间。不幸的是,没有内置功能可用于此,因此您有两个选项:

选项1:使用时间预算库

timebudget是一个多功能且非常简单的库,您可以在pip安装后仅在一行代码中使用它。

@timebudget  # Record how long this function takes
def my_method():
    # my code

选项2:使用我的小模块

我创建了一个名为timing.py的计时实用程序模块。只需将这个文件放到项目中并开始使用它。唯一的外部依赖是runstats,它同样很小。

现在,只需在函数前面放置一个装饰器,就可以对任何函数计时:

import timing

@timing.MeasureTime
def MyBigFunc():
    #do something time consuming
    for i in range(10000):
        print(i)

timing.print_all_timings()

如果您想对代码的一部分计时,只需将其放入块中:

import timing

#somewhere in my code

with timing.MeasureBlockTime("MyBlock"):
    #do something time consuming
    for i in range(10000):
        print(i)

# rest of my code

timing.print_all_timings()

优势:

有几个半备份版本,所以我想指出几个亮点:

出于前面描述的原因,请使用timeit中的计时器,而不是time.time。如果需要,可以在计时期间禁用GC。Decorator接受带有命名或未命名参数的函数。能够在块计时中禁用打印(与timing.MeasureBlockTime()一起使用为t,然后为t.passed)。能够为块计时启用gc。

(仅使用Ipython)您可以使用%timeit来测量平均处理时间:

def foo():
    print "hello"

然后:

%timeit foo()

结果如下:

10000 loops, best of 3: 27 µs per loop

这是另一种方法:

>> from pytictoc import TicToc
>> t = TicToc() # create TicToc instance
>> t.tic() # Start timer
>> # do something
>> t.toc() # Print elapsed time
Elapsed time is 2.612231 seconds.

与传统方式相比:

>> from time import time
>> t1 = time()
>> # do something
>> t2 = time()
>> elapsed = t2 - t1
>> print('Elapsed time is %f seconds.' % elapsed)
Elapsed time is 2.612231 seconds.

安装:

pip install pytictoc

有关详细信息,请参阅PyPi页面。