我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

使用time.time()测量两点之间经过的墙上时钟时间:

import time

start = time.time()
print("hello")
end = time.time()
print(end - start)

这给出了以秒为单位的执行时间。


Python 3.3之后的另一个选项可能是使用perf_counter或process_time,具体取决于您的需求。在3.3之前,建议使用time.clock(感谢Amber)。但是,它目前已被弃用:

在Unix上,将当前处理器时间作为浮点数返回以秒表示。准确度,事实上就是定义“处理器时间”的含义取决于C函数的含义具有相同名称。在Windows上,此函数返回自该函数的第一次调用,作为浮点数,基于Win32函数QueryPerformanceCounter()。分辨率通常为优于一微秒。自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),根据您的要求,要有明确的行为。

其他回答

这是一种很晚的反应,但也许对某人来说是有目的的。这是一种我认为非常干净的方法。

import time

def timed(fun, *args):
    s = time.time()
    r = fun(*args)
    print('{} execution took {} seconds.'.format(fun.__name__, time.time()-s))
    return(r)

timed(print, "Hello")

请记住,“print”是Python 3中的函数,而不是Python 2.7中的函数。但是,它可以与任何其他功能一起使用。干杯

除了ipython中的%timeit之外,您还可以使用%%timeit进行多行代码片段:

In [1]: %%timeit
   ...: complex_func()
   ...: 2 + 2 == 5
   ...:
   ...:

1 s ± 1.93 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

同样,它也可以以同样的方式在jupyter笔记本中使用,只需将magic%%timeit放在单元格的开头。

使用timeit.default_timer而不是timeit.timeit。前者自动提供您的平台和Python版本上可用的最佳时钟:

from timeit import default_timer as timer

start = timer()
# ...
end = timer()
print(end - start) # Time in seconds, e.g. 5.38091952400282

timeit.default_timer被分配给time.time()或time.clock(),具体取决于操作系统。在Python 3.3+default_timer上,所有平台上都有time.perf_counter()。请参见Python-time.cclock()与time.time()-精度?

另请参见:

正在优化代码如何优化速度

python cProfile和pstats模块为测量某些函数的时间提供了强大的支持,而无需在现有函数周围添加任何代码。

例如,如果您有python脚本timeFunctions.py:

import time

def hello():
    print "Hello :)"
    time.sleep(0.1)

def thankyou():
    print "Thank you!"
    time.sleep(0.05)

for idx in range(10):
    hello()

for idx in range(100):
    thankyou()

要运行探查器并生成文件的统计信息,只需运行:

python -m cProfile -o timeStats.profile timeFunctions.py

这是在使用cProfile模块来评测timeFunctions.py中的所有函数,并在timeStats.profile文件中收集统计信息。注意,我们不必向现有模块(timeFunctions.py)添加任何代码,这可以通过任何模块来完成。

一旦有了stats文件,就可以按如下方式运行pstats模块:

python -m pstats timeStats.profile

这将运行交互式统计浏览器,它为您提供了许多不错的功能。对于您的特定用例,您可以只检查函数的统计信息。在我们的示例中,检查两个函数的统计信息显示如下:

Welcome to the profile statistics browser.
timeStats.profile% stats hello
<timestamp>    timeStats.profile

         224 function calls in 6.014 seconds

   Random listing order was used
   List reduced from 6 to 1 due to restriction <'hello'>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       10    0.000    0.000    1.001    0.100 timeFunctions.py:3(hello)

timeStats.profile% stats thankyou
<timestamp>    timeStats.profile

         224 function calls in 6.014 seconds

   Random listing order was used
   List reduced from 6 to 1 due to restriction <'thankyou'>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
      100    0.002    0.000    5.012    0.050 timeFunctions.py:7(thankyou)

这个假例子做不了什么,但给了你一个可以做什么的想法。这种方法最好的一点是,我不必编辑任何现有代码来获取这些数字,并且显然有助于分析。

这里有一个很好的文档记录和完全类型提示的装饰器,我将其用作通用工具:

from functools import wraps
from time import perf_counter
from typing import Any, Callable, Optional, TypeVar, cast

F = TypeVar("F", bound=Callable[..., Any])


def timer(prefix: Optional[str] = None, precision: int = 6) -> Callable[[F], F]:
    """Use as a decorator to time the execution of any function.

    Args:
        prefix: String to print before the time taken.
            Default is the name of the function.
        precision: How many decimals to include in the seconds value.

    Examples:
        >>> @timer()
        ... def foo(x):
        ...     return x
        >>> foo(123)
        foo: 0.000...s
        123
        >>> @timer("Time taken: ", 2)
        ... def foo(x):
        ...     return x
        >>> foo(123)
        Time taken: 0.00s
        123

    """
    def decorator(func: F) -> F:
        @wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:
            nonlocal prefix
            prefix = prefix if prefix is not None else f"{func.__name__}: "
            start = perf_counter()
            result = func(*args, **kwargs)
            end = perf_counter()
            print(f"{prefix}{end - start:.{precision}f}s")
            return result
        return cast(F, wrapper)
    return decorator

示例用法:

from timer import timer


@timer(precision=9)
def takes_long(x: int) -> bool:
    return x in (i for i in range(x + 1))


result = takes_long(10**8)
print(result)

输出:耗时:4.942629056秒真的

可以通过以下方式检查doctest:

$ python3 -m doctest --verbose -o=ELLIPSIS timer.py

类型提示:

$ mypy timer.py