我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

使用一个上下文管理器可以很有趣地做到这一点,它可以自动记住进入with块时的开始时间,然后在块退出时冻结结束时间。通过一些小技巧,您甚至可以从同一个上下文管理器函数获得块内的运行时间计数。

核心库没有这个(但可能应该有)。一旦就位,您可以执行以下操作:

with elapsed_timer() as elapsed:
    # some lengthy code
    print( "midpoint at %.2f seconds" % elapsed() )  # time so far
    # other lengthy code

print( "all done at %.2f seconds" % elapsed() )

以下是足以完成此任务的contextmanager代码:

from contextlib import contextmanager
from timeit import default_timer

@contextmanager
def elapsed_timer():
    start = default_timer()
    elapser = lambda: default_timer() - start
    yield lambda: elapser()
    end = default_timer()
    elapser = lambda: end-start

以及一些可运行的演示代码:

import time

with elapsed_timer() as elapsed:
    time.sleep(1)
    print(elapsed())
    time.sleep(2)
    print(elapsed())
    time.sleep(3)

注意,通过设计此函数,elapsed()的返回值在块退出时被冻结,并且进一步的调用返回相同的持续时间(在这个玩具示例中大约为6秒)。

其他回答

(仅使用Ipython)您可以使用%timeit来测量平均处理时间:

def foo():
    print "hello"

然后:

%timeit foo()

结果如下:

10000 loops, best of 3: 27 µs per loop

我们还可以将时间转换为人类可读的时间。

import time, datetime

start = time.clock()

def num_multi1(max):
    result = 0
    for num in range(0, 1000):
        if (num % 3 == 0 or num % 5 == 0):
            result += num

    print "Sum is %d " % result

num_multi1(1000)

end = time.clock()
value = end - start
timestamp = datetime.datetime.fromtimestamp(value)
print timestamp.strftime('%Y-%m-%d %H:%M:%S')

使用time.time来测量执行情况,可以获得命令的总体执行时间,包括计算机上其他进程花费的运行时间。这是用户注意到的时候,但如果你想比较不同的代码片段/算法/函数/。。。

有关timeit的更多信息:

使用timeit模块timeit–对少量Python代码的执行进行计时

如果您想深入了解剖析:

http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code如何评测python脚本?

更新:我使用http://pythonhosted.org/line_profiler/在过去的一年中,我们做了很多工作,发现它非常有用,建议使用它来代替Pythons配置文件模块。

以下是我在阅读了许多好答案以及其他几篇文章之后的发现。

首先,如果你在timeit和time.time之间进行辩论,timeit有两个优点:

timeit选择操作系统和Python版本上可用的最佳计时器。然而,timeit禁用垃圾收集,这不是您可能想要或不想要的。

现在的问题是,时间并不是那么简单,因为它需要设置,当你有大量的导入时,事情会变得很糟糕。理想情况下,您只需要一个装饰器或使用块和度量时间。不幸的是,没有内置功能可用于此,因此您有两个选项:

选项1:使用时间预算库

timebudget是一个多功能且非常简单的库,您可以在pip安装后仅在一行代码中使用它。

@timebudget  # Record how long this function takes
def my_method():
    # my code

选项2:使用我的小模块

我创建了一个名为timing.py的计时实用程序模块。只需将这个文件放到项目中并开始使用它。唯一的外部依赖是runstats,它同样很小。

现在,只需在函数前面放置一个装饰器,就可以对任何函数计时:

import timing

@timing.MeasureTime
def MyBigFunc():
    #do something time consuming
    for i in range(10000):
        print(i)

timing.print_all_timings()

如果您想对代码的一部分计时,只需将其放入块中:

import timing

#somewhere in my code

with timing.MeasureBlockTime("MyBlock"):
    #do something time consuming
    for i in range(10000):
        print(i)

# rest of my code

timing.print_all_timings()

优势:

有几个半备份版本,所以我想指出几个亮点:

出于前面描述的原因,请使用timeit中的计时器,而不是time.time。如果需要,可以在计时期间禁用GC。Decorator接受带有命名或未命名参数的函数。能够在块计时中禁用打印(与timing.MeasureBlockTime()一起使用为t,然后为t.passed)。能够为块计时启用gc。

使用time.time()测量两点之间经过的墙上时钟时间:

import time

start = time.time()
print("hello")
end = time.time()
print(end - start)

这给出了以秒为单位的执行时间。


Python 3.3之后的另一个选项可能是使用perf_counter或process_time,具体取决于您的需求。在3.3之前,建议使用time.clock(感谢Amber)。但是,它目前已被弃用:

在Unix上,将当前处理器时间作为浮点数返回以秒表示。准确度,事实上就是定义“处理器时间”的含义取决于C函数的含义具有相同名称。在Windows上,此函数返回自该函数的第一次调用,作为浮点数,基于Win32函数QueryPerformanceCounter()。分辨率通常为优于一微秒。自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),根据您的要求,要有明确的行为。