我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

要深入了解递归调用的每个函数,请执行以下操作:

%load_ext snakeviz
%%snakeviz

它只需要在Jupyter笔记本中使用这两行代码,就可以生成一个很好的交互图。例如:

这是代码。同样,以%开头的2行是使用snakeviz所需的唯一额外代码行:

# !pip install snakeviz
%load_ext snakeviz
import glob
import hashlib

%%snakeviz

files = glob.glob('*.txt')
def print_files_hashed(files):
    for file in files:
        with open(file) as f:
            print(hashlib.md5(f.read().encode('utf-8')).hexdigest())
print_files_hashed(files)

在笔记本外运行snakeviz似乎也是可能的。更多信息请访问snakeviz网站。

其他回答

使用timeit.default_timer而不是timeit.timeit。前者自动提供您的平台和Python版本上可用的最佳时钟:

from timeit import default_timer as timer

start = timer()
# ...
end = timer()
print(end - start) # Time in seconds, e.g. 5.38091952400282

timeit.default_timer被分配给time.time()或time.clock(),具体取决于操作系统。在Python 3.3+default_timer上,所有平台上都有time.perf_counter()。请参见Python-time.cclock()与time.time()-精度?

另请参见:

正在优化代码如何优化速度

作为lambda,获取经过的时间和时间戳:

import datetime
t_set = lambda: datetime.datetime.now().astimezone().replace(microsecond=0)
t_diff = lambda t: str(t_set() - t)
t_stamp = lambda t=None: str(t) if t else str(t_set())

在实践中:

>>> 
>>> t_set()
datetime.datetime(2021, 3, 21, 1, 25, 17, tzinfo=datetime.timezone(datetime.timedelta(days=-1, seconds=61200), 'PDT'))
>>> t = t_set()
>>> t_diff(t)
'0:00:14'
>>> t_diff(t)
'0:00:23'
>>> t_stamp()
'2021-03-21 01:25:57-07:00'
>>> t_stamp(t)
'2021-03-21 01:25:22-07:00'
>>> 

下面是另一个用于计时代码的上下文管理器-

用法:

from benchmark import benchmark

with benchmark("Test 1+1"):
    1+1
=>
Test 1+1 : 1.41e-06 seconds

或者,如果您需要时间值

with benchmark("Test 1+1") as b:
    1+1
print(b.time)
=>
Test 1+1 : 7.05e-07 seconds
7.05233786763e-07

基准.py:

from timeit import default_timer as timer

class benchmark(object):

    def __init__(self, msg, fmt="%0.3g"):
        self.msg = msg
        self.fmt = fmt

    def __enter__(self):
        self.start = timer()
        return self

    def __exit__(self, *args):
        t = timer() - self.start
        print(("%s : " + self.fmt + " seconds") % (self.msg, t))
        self.time = t

改编自http://dabeaz.blogspot.fr/2010/02/context-manager-for-timing-benchmarks.html

这里有一个很好的文档记录和完全类型提示的装饰器,我将其用作通用工具:

from functools import wraps
from time import perf_counter
from typing import Any, Callable, Optional, TypeVar, cast

F = TypeVar("F", bound=Callable[..., Any])


def timer(prefix: Optional[str] = None, precision: int = 6) -> Callable[[F], F]:
    """Use as a decorator to time the execution of any function.

    Args:
        prefix: String to print before the time taken.
            Default is the name of the function.
        precision: How many decimals to include in the seconds value.

    Examples:
        >>> @timer()
        ... def foo(x):
        ...     return x
        >>> foo(123)
        foo: 0.000...s
        123
        >>> @timer("Time taken: ", 2)
        ... def foo(x):
        ...     return x
        >>> foo(123)
        Time taken: 0.00s
        123

    """
    def decorator(func: F) -> F:
        @wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:
            nonlocal prefix
            prefix = prefix if prefix is not None else f"{func.__name__}: "
            start = perf_counter()
            result = func(*args, **kwargs)
            end = perf_counter()
            print(f"{prefix}{end - start:.{precision}f}s")
            return result
        return cast(F, wrapper)
    return decorator

示例用法:

from timer import timer


@timer(precision=9)
def takes_long(x: int) -> bool:
    return x in (i for i in range(x + 1))


result = takes_long(10**8)
print(result)

输出:耗时:4.942629056秒真的

可以通过以下方式检查doctest:

$ python3 -m doctest --verbose -o=ELLIPSIS timer.py

类型提示:

$ mypy timer.py

使用time.time()测量两点之间经过的墙上时钟时间:

import time

start = time.time()
print("hello")
end = time.time()
print(end - start)

这给出了以秒为单位的执行时间。


Python 3.3之后的另一个选项可能是使用perf_counter或process_time,具体取决于您的需求。在3.3之前,建议使用time.clock(感谢Amber)。但是,它目前已被弃用:

在Unix上,将当前处理器时间作为浮点数返回以秒表示。准确度,事实上就是定义“处理器时间”的含义取决于C函数的含义具有相同名称。在Windows上,此函数返回自该函数的第一次调用,作为浮点数,基于Win32函数QueryPerformanceCounter()。分辨率通常为优于一微秒。自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),根据您的要求,要有明确的行为。