我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

这是一种很晚的反应,但也许对某人来说是有目的的。这是一种我认为非常干净的方法。

import time

def timed(fun, *args):
    s = time.time()
    r = fun(*args)
    print('{} execution took {} seconds.'.format(fun.__name__, time.time()-s))
    return(r)

timed(print, "Hello")

请记住,“print”是Python 3中的函数,而不是Python 2.7中的函数。但是,它可以与任何其他功能一起使用。干杯

其他回答

仅Python 3:

由于从Python 3.3开始,time.cclock()已被弃用,因此您将希望使用time.perf_counter()进行系统范围的计时,或使用time.process_time()进行进程范围的计时(就像您以前使用time.cclok()的方式一样):

import time

t = time.process_time()
#do some stuff
elapsed_time = time.process_time() - t

新函数process_time将不包括睡眠期间经过的时间。

使用time.time来测量执行情况,可以获得命令的总体执行时间,包括计算机上其他进程花费的运行时间。这是用户注意到的时候,但如果你想比较不同的代码片段/算法/函数/。。。

有关timeit的更多信息:

使用timeit模块timeit–对少量Python代码的执行进行计时

如果您想深入了解剖析:

http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code如何评测python脚本?

更新:我使用http://pythonhosted.org/line_profiler/在过去的一年中,我们做了很多工作,发现它非常有用,建议使用它来代替Pythons配置文件模块。

还有一种使用timeit的方法:

from timeit import timeit

def func():
    return 1 + 1

time = timeit(func, number=1)
print(time)

我参加聚会已经很晚了,但这种方法以前没有涉及过。当我们想要手动对某段代码进行基准测试时,我们可能需要首先找出哪些类方法占用了执行时间,这有时并不明显。我构建了以下元类来解决这个问题:

from __future__ import annotations

from functools import wraps
from time import time
from typing import Any, Callable, TypeVar, cast

F = TypeVar('F', bound=Callable[..., Any])


def timed_method(func: F, prefix: str | None = None) -> F:
    prefix = (prefix + ' ') if prefix else ''

    @wraps(func)
    def inner(*args, **kwargs):  # type: ignore
        start = time()
        try:
            ret = func(*args, **kwargs)
        except BaseException:
            print(f'[ERROR] {prefix}{func.__qualname__}: {time() - start}')
            raise
        
        print(f'{prefix}{func.__qualname__}: {time() - start}')
        return ret

    return cast(F, inner)


class TimedClass(type):
    def __new__(
        cls: type[TimedClass],
        name: str,
        bases: tuple[type[type], ...],
        attrs: dict[str, Any],
        **kwargs: Any,
    ) -> TimedClass:
        for name, attr in attrs.items():
            if isinstance(attr, (classmethod, staticmethod)):
                attrs[name] = type(attr)(timed_method(attr.__func__))
            elif isinstance(attr, property):
                attrs[name] = property(
                    timed_method(attr.fget, 'get') if attr.fget is not None else None,
                    timed_method(attr.fset, 'set') if attr.fset is not None else None,
                    timed_method(attr.fdel, 'del') if attr.fdel is not None else None,
                )
            elif callable(attr):
                attrs[name] = timed_method(attr)

        return super().__new__(cls, name, bases, attrs)

它允许如下使用:

class MyClass(metaclass=TimedClass):
    def foo(self): 
        print('foo')
    
    @classmethod
    def bar(cls): 
        print('bar')
    
    @staticmethod
    def baz(): 
        print('baz')
    
    @property
    def prop(self): 
        print('prop')
    
    @prop.setter
    def prop(self, v): 
        print('fset')
    
    @prop.deleter
    def prop(self): 
        print('fdel')


c = MyClass()

c.foo()
c.bar()
c.baz()
c.prop
c.prop = 2
del c.prop

MyClass.bar()
MyClass.baz()

它打印:

foo
MyClass.foo: 1.621246337890625e-05
bar
MyClass.bar: 4.5299530029296875e-06
baz
MyClass.baz: 4.291534423828125e-06
prop
get MyClass.prop: 3.814697265625e-06
fset
set MyClass.prop: 3.5762786865234375e-06
fdel
del MyClass.prop: 3.5762786865234375e-06
bar
MyClass.bar: 3.814697265625e-06
baz
MyClass.baz: 4.0531158447265625e-06

它可以与其他答案相结合,以更精确的方式代替time.time。

给定要计时的函数,

测试.py:

def foo(): 
    # print "hello"   
    return "hello"

使用timeit的最简单方法是从命令行调用它:

% python -mtimeit -s'import test' 'test.foo()'
1000000 loops, best of 3: 0.254 usec per loop

不要尝试使用time.time或time.clock(天真地)来比较函数的速度。他们会给出误导性的结果。

PS.不要将打印语句放在您希望计时的函数中;否则测量的时间将取决于终端的速度。