我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
测量时间(秒):
from timeit import default_timer as timer
from datetime import timedelta
start = timer()
# ....
# (your code runs here)
# ...
end = timer()
print(timedelta(seconds=end-start))
输出:
0:00:01.946339
其他回答
这是一种很晚的反应,但也许对某人来说是有目的的。这是一种我认为非常干净的方法。
import time
def timed(fun, *args):
s = time.time()
r = fun(*args)
print('{} execution took {} seconds.'.format(fun.__name__, time.time()-s))
return(r)
timed(print, "Hello")
请记住,“print”是Python 3中的函数,而不是Python 2.7中的函数。但是,它可以与任何其他功能一起使用。干杯
使用time.time来测量执行情况,可以获得命令的总体执行时间,包括计算机上其他进程花费的运行时间。这是用户注意到的时候,但如果你想比较不同的代码片段/算法/函数/。。。
有关timeit的更多信息:
使用timeit模块timeit–对少量Python代码的执行进行计时
如果您想深入了解剖析:
http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code如何评测python脚本?
更新:我使用http://pythonhosted.org/line_profiler/在过去的一年中,我们做了很多工作,发现它非常有用,建议使用它来代替Pythons配置文件模块。
计算操作持续时间的最简单方法:
import time
start_time = time.monotonic()
<operations, programs>
print('seconds: ', time.monotonic() - start_time)
这里有官方文件。
print_elapsed_time函数如下
def print_elapsed_time(prefix=''):
e_time = time.time()
if not hasattr(print_elapsed_time, 's_time'):
print_elapsed_time.s_time = e_time
else:
print(f'{prefix} elapsed time: {e_time - print_elapsed_time.s_time:.2f} sec')
print_elapsed_time.s_time = e_time
用这种方式
print_elapsed_time()
.... heavy jobs ...
print_elapsed_time('after heavy jobs')
.... tons of jobs ...
print_elapsed_time('after tons of jobs')
结果是
after heavy jobs elapsed time: 0.39 sec
after tons of jobs elapsed time: 0.60 sec
这个函数的优点和缺点是你不需要经过开始时间
测量小代码片段的执行时间。
时间单位:以秒为单位,以浮点数表示
import timeit
t = timeit.Timer('li = list(map(lambda x:x*2,[1,2,3,4,5]))')
t.timeit()
t.repeat()
>[1.2934070999999676, 1.3335035000000062, 1.422568500000125]
repeat()方法可以方便地多次调用timeit()并返回结果列表。重复(重复=3)¶有了这个列表,我们可以计算所有时间的平均值。默认情况下,timeit()在计时期间暂时关闭垃圾收集。time.Timer()解决了这个问题。赞成的意见:timeit.Timer()使独立计时更具可比性。gc可能是被测函数性能的重要组成部分。如果是,gc(垃圾收集器)可以作为设置字符串中的第一条语句重新启用。例如:timeit.Timer('li=列表(映射(lambda x:x*2,[1,2,3,4,5])',设置='gc.enable()')
源Python文档!