我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
使用time.time来测量执行情况,可以获得命令的总体执行时间,包括计算机上其他进程花费的运行时间。这是用户注意到的时候,但如果你想比较不同的代码片段/算法/函数/。。。
有关timeit的更多信息:
使用timeit模块timeit–对少量Python代码的执行进行计时
如果您想深入了解剖析:
http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code如何评测python脚本?
更新:我使用http://pythonhosted.org/line_profiler/在过去的一年中,我们做了很多工作,发现它非常有用,建议使用它来代替Pythons配置文件模块。
其他回答
import time
def getElapsedTime(startTime, units):
elapsedInSeconds = time.time() - startTime
if units == 'sec':
return elapsedInSeconds
if units == 'min':
return elapsedInSeconds/60
if units == 'hour':
return elapsedInSeconds/(60*60)
使用time.time()测量两点之间经过的墙上时钟时间:
import time
start = time.time()
print("hello")
end = time.time()
print(end - start)
这给出了以秒为单位的执行时间。
Python 3.3之后的另一个选项可能是使用perf_counter或process_time,具体取决于您的需求。在3.3之前,建议使用time.clock(感谢Amber)。但是,它目前已被弃用:
在Unix上,将当前处理器时间作为浮点数返回以秒表示。准确度,事实上就是定义“处理器时间”的含义取决于C函数的含义具有相同名称。在Windows上,此函数返回自该函数的第一次调用,作为浮点数,基于Win32函数QueryPerformanceCounter()。分辨率通常为优于一微秒。自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),根据您的要求,要有明确的行为。
我更喜欢这个。timeit医生太令人困惑了。
from datetime import datetime
start_time = datetime.now()
# INSERT YOUR CODE
time_elapsed = datetime.now() - start_time
print('Time elapsed (hh:mm:ss.ms) {}'.format(time_elapsed))
注意,这里没有进行任何格式化,我只是在打印输出中写入hh:mm:ss,以便可以解释time_elapsed
我喜欢简单(python 3):
from timeit import timeit
timeit(lambda: print("hello"))
单个执行的输出为微秒:
2.430883963010274
说明:timeit默认执行匿名函数100万次,结果以秒为单位。因此,1次执行的结果相同,但平均以微秒为单位。
对于速度较慢的操作,添加较少的迭代次数,否则您可能会一直等待:
import time
timeit(lambda: time.sleep(1.5), number=1)
总迭代次数的输出始终以秒为单位:
1.5015795179999714
我参加聚会已经很晚了,但这种方法以前没有涉及过。当我们想要手动对某段代码进行基准测试时,我们可能需要首先找出哪些类方法占用了执行时间,这有时并不明显。我构建了以下元类来解决这个问题:
from __future__ import annotations
from functools import wraps
from time import time
from typing import Any, Callable, TypeVar, cast
F = TypeVar('F', bound=Callable[..., Any])
def timed_method(func: F, prefix: str | None = None) -> F:
prefix = (prefix + ' ') if prefix else ''
@wraps(func)
def inner(*args, **kwargs): # type: ignore
start = time()
try:
ret = func(*args, **kwargs)
except BaseException:
print(f'[ERROR] {prefix}{func.__qualname__}: {time() - start}')
raise
print(f'{prefix}{func.__qualname__}: {time() - start}')
return ret
return cast(F, inner)
class TimedClass(type):
def __new__(
cls: type[TimedClass],
name: str,
bases: tuple[type[type], ...],
attrs: dict[str, Any],
**kwargs: Any,
) -> TimedClass:
for name, attr in attrs.items():
if isinstance(attr, (classmethod, staticmethod)):
attrs[name] = type(attr)(timed_method(attr.__func__))
elif isinstance(attr, property):
attrs[name] = property(
timed_method(attr.fget, 'get') if attr.fget is not None else None,
timed_method(attr.fset, 'set') if attr.fset is not None else None,
timed_method(attr.fdel, 'del') if attr.fdel is not None else None,
)
elif callable(attr):
attrs[name] = timed_method(attr)
return super().__new__(cls, name, bases, attrs)
它允许如下使用:
class MyClass(metaclass=TimedClass):
def foo(self):
print('foo')
@classmethod
def bar(cls):
print('bar')
@staticmethod
def baz():
print('baz')
@property
def prop(self):
print('prop')
@prop.setter
def prop(self, v):
print('fset')
@prop.deleter
def prop(self):
print('fdel')
c = MyClass()
c.foo()
c.bar()
c.baz()
c.prop
c.prop = 2
del c.prop
MyClass.bar()
MyClass.baz()
它打印:
foo
MyClass.foo: 1.621246337890625e-05
bar
MyClass.bar: 4.5299530029296875e-06
baz
MyClass.baz: 4.291534423828125e-06
prop
get MyClass.prop: 3.814697265625e-06
fset
set MyClass.prop: 3.5762786865234375e-06
fdel
del MyClass.prop: 3.5762786865234375e-06
bar
MyClass.bar: 3.814697265625e-06
baz
MyClass.baz: 4.0531158447265625e-06
它可以与其他答案相结合,以更精确的方式代替time.time。