我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
使用time.time来测量执行情况,可以获得命令的总体执行时间,包括计算机上其他进程花费的运行时间。这是用户注意到的时候,但如果你想比较不同的代码片段/算法/函数/。。。
有关timeit的更多信息:
使用timeit模块timeit–对少量Python代码的执行进行计时
如果您想深入了解剖析:
http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code如何评测python脚本?
更新:我使用http://pythonhosted.org/line_profiler/在过去的一年中,我们做了很多工作,发现它非常有用,建议使用它来代替Pythons配置文件模块。
其他回答
(仅使用Ipython)您可以使用%timeit来测量平均处理时间:
def foo():
print "hello"
然后:
%timeit foo()
结果如下:
10000 loops, best of 3: 27 µs per loop
使用time.time来测量执行情况,可以获得命令的总体执行时间,包括计算机上其他进程花费的运行时间。这是用户注意到的时候,但如果你想比较不同的代码片段/算法/函数/。。。
有关timeit的更多信息:
使用timeit模块timeit–对少量Python代码的执行进行计时
如果您想深入了解剖析:
http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code如何评测python脚本?
更新:我使用http://pythonhosted.org/line_profiler/在过去的一年中,我们做了很多工作,发现它非常有用,建议使用它来代替Pythons配置文件模块。
您可以使用Benchmark Timer(免责声明:我是作者):
基准计时器使用BenchmarkTimer类来测量执行某段代码所需的时间。这比内置的timeit函数具有更大的灵活性,并且与其他代码在相同的范围内运行。安装pip安装git+https://github.com/michaelitvin/benchmark-timer.git@main#egg=基准计时器用法单次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MySimpleCode”)作为tm,tm.single_ieration():睡眠时间(.3)输出:正在对标MySimpleCode。。。MySimpleCode基准:n_iters=1 avg=0.300881s std=0.000000s range=[0.3000881s ~ 0.300881s]多次迭代示例从benchmark_timer导入BenchmarkTimer导入时间使用BenchmarkTimer(name=“MyTimedCode”,print_iters=True)作为tm:对于tm迭代中的timing_iteration(n=5,预热=2):定时重复:睡眠时间(.1)打印(“\n===============\n”)print(“定时列表:”,列表(tm.timenings.values()))输出:正在对标MyTimedCode。。。[MyTimedCode]iter=0耗时0.099755s(预热)[MyTimedCode]iter=1耗时0.100476秒(预热)[MyTimedCode]iter=2耗时0.100189秒[MyTimedCode]iter=3耗时0.099900s[MyTimedCode]iter=4耗时0.100888秒MyTimedCode基准:n_iters=3 avg=0.100326s std=0.000414s range=[0.099900s ~ 0.100888s]===================时间列表:[0.1001885000000001,0.09990049999999995,0.10088760000000008]
虽然问题中没有严格要求,但通常情况下,您需要一种简单、统一的方法来递增地测量几行代码之间的经过时间。
如果您使用的是Python 3.8或更高版本,则可以使用赋值表达式(也称为walrus运算符)以相当优雅的方式实现这一点:
import time
start, times = time.perf_counter(), {}
print("hello")
times["print"] = -start + (start := time.perf_counter())
time.sleep(1.42)
times["sleep"] = -start + (start := time.perf_counter())
a = [n**2 for n in range(10000)]
times["pow"] = -start + (start := time.perf_counter())
print(times)
=>
{'print': 2.193450927734375e-05, 'sleep': 1.4210970401763916, 'power': 0.005671024322509766}
使用timeit.default_timer而不是timeit.timeit。前者自动提供您的平台和Python版本上可用的最佳时钟:
from timeit import default_timer as timer
start = timer()
# ...
end = timer()
print(end - start) # Time in seconds, e.g. 5.38091952400282
timeit.default_timer被分配给time.time()或time.clock(),具体取决于操作系统。在Python 3.3+default_timer上,所有平台上都有time.perf_counter()。请参见Python-time.cclock()与time.time()-精度?
另请参见:
正在优化代码如何优化速度