我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
虽然问题中没有严格要求,但通常情况下,您需要一种简单、统一的方法来递增地测量几行代码之间的经过时间。
如果您使用的是Python 3.8或更高版本,则可以使用赋值表达式(也称为walrus运算符)以相当优雅的方式实现这一点:
import time
start, times = time.perf_counter(), {}
print("hello")
times["print"] = -start + (start := time.perf_counter())
time.sleep(1.42)
times["sleep"] = -start + (start := time.perf_counter())
a = [n**2 for n in range(10000)]
times["pow"] = -start + (start := time.perf_counter())
print(times)
=>
{'print': 2.193450927734375e-05, 'sleep': 1.4210970401763916, 'power': 0.005671024322509766}
其他回答
使用一个上下文管理器可以很有趣地做到这一点,它可以自动记住进入with块时的开始时间,然后在块退出时冻结结束时间。通过一些小技巧,您甚至可以从同一个上下文管理器函数获得块内的运行时间计数。
核心库没有这个(但可能应该有)。一旦就位,您可以执行以下操作:
with elapsed_timer() as elapsed:
# some lengthy code
print( "midpoint at %.2f seconds" % elapsed() ) # time so far
# other lengthy code
print( "all done at %.2f seconds" % elapsed() )
以下是足以完成此任务的contextmanager代码:
from contextlib import contextmanager
from timeit import default_timer
@contextmanager
def elapsed_timer():
start = default_timer()
elapser = lambda: default_timer() - start
yield lambda: elapser()
end = default_timer()
elapser = lambda: end-start
以及一些可运行的演示代码:
import time
with elapsed_timer() as elapsed:
time.sleep(1)
print(elapsed())
time.sleep(2)
print(elapsed())
time.sleep(3)
注意,通过设计此函数,elapsed()的返回值在块退出时被冻结,并且进一步的调用返回相同的持续时间(在这个玩具示例中大约为6秒)。
基于https://stackoverflow.com/a/30024601/5095636,以下为无lambda版本,如flake8根据E731对lambda使用的警告:
from contextlib import contextmanager
from timeit import default_timer
@contextmanager
def elapsed_timer():
start_time = default_timer()
class _Timer():
start = start_time
end = default_timer()
duration = end - start
yield _Timer
end_time = default_timer()
_Timer.end = end_time
_Timer.duration = end_time - start_time
测试:
from time import sleep
with elapsed_timer() as t:
print("start:", t.start)
sleep(1)
print("end:", t.end)
t.start
t.end
t.duration
这种独特的基于类的方法提供了可打印的字符串表示、可自定义的舍入,以及以字符串或浮点形式方便地访问经过的时间。它是用Python 3.7开发的。
import datetime
import timeit
class Timer:
"""Measure time used."""
# Ref: https://stackoverflow.com/a/57931660/
def __init__(self, round_ndigits: int = 0):
self._round_ndigits = round_ndigits
self._start_time = timeit.default_timer()
def __call__(self) -> float:
return timeit.default_timer() - self._start_time
def __str__(self) -> str:
return str(datetime.timedelta(seconds=round(self(), self._round_ndigits)))
用法:
# Setup timer
>>> timer = Timer()
# Access as a string
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:03.
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:04.
# Access as a float
>>> timer()
6.841332235
>>> timer()
7.970274425
如何测量两次操作之间的时间。比较两次操作的时间。
import time
b = (123*321)*123
t1 = time.time()
c = ((9999^123)*321)^123
t2 = time.time()
print(t2-t1)
7.987022399902344e-05
python cProfile和pstats模块为测量某些函数的时间提供了强大的支持,而无需在现有函数周围添加任何代码。
例如,如果您有python脚本timeFunctions.py:
import time
def hello():
print "Hello :)"
time.sleep(0.1)
def thankyou():
print "Thank you!"
time.sleep(0.05)
for idx in range(10):
hello()
for idx in range(100):
thankyou()
要运行探查器并生成文件的统计信息,只需运行:
python -m cProfile -o timeStats.profile timeFunctions.py
这是在使用cProfile模块来评测timeFunctions.py中的所有函数,并在timeStats.profile文件中收集统计信息。注意,我们不必向现有模块(timeFunctions.py)添加任何代码,这可以通过任何模块来完成。
一旦有了stats文件,就可以按如下方式运行pstats模块:
python -m pstats timeStats.profile
这将运行交互式统计浏览器,它为您提供了许多不错的功能。对于您的特定用例,您可以只检查函数的统计信息。在我们的示例中,检查两个函数的统计信息显示如下:
Welcome to the profile statistics browser.
timeStats.profile% stats hello
<timestamp> timeStats.profile
224 function calls in 6.014 seconds
Random listing order was used
List reduced from 6 to 1 due to restriction <'hello'>
ncalls tottime percall cumtime percall filename:lineno(function)
10 0.000 0.000 1.001 0.100 timeFunctions.py:3(hello)
timeStats.profile% stats thankyou
<timestamp> timeStats.profile
224 function calls in 6.014 seconds
Random listing order was used
List reduced from 6 to 1 due to restriction <'thankyou'>
ncalls tottime percall cumtime percall filename:lineno(function)
100 0.002 0.000 5.012 0.050 timeFunctions.py:7(thankyou)
这个假例子做不了什么,但给了你一个可以做什么的想法。这种方法最好的一点是,我不必编辑任何现有代码来获取这些数字,并且显然有助于分析。