我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
print_elapsed_time函数如下
def print_elapsed_time(prefix=''):
e_time = time.time()
if not hasattr(print_elapsed_time, 's_time'):
print_elapsed_time.s_time = e_time
else:
print(f'{prefix} elapsed time: {e_time - print_elapsed_time.s_time:.2f} sec')
print_elapsed_time.s_time = e_time
用这种方式
print_elapsed_time()
.... heavy jobs ...
print_elapsed_time('after heavy jobs')
.... tons of jobs ...
print_elapsed_time('after tons of jobs')
结果是
after heavy jobs elapsed time: 0.39 sec
after tons of jobs elapsed time: 0.60 sec
这个函数的优点和缺点是你不需要经过开始时间
其他回答
这种独特的基于类的方法提供了可打印的字符串表示、可自定义的舍入,以及以字符串或浮点形式方便地访问经过的时间。它是用Python 3.7开发的。
import datetime
import timeit
class Timer:
"""Measure time used."""
# Ref: https://stackoverflow.com/a/57931660/
def __init__(self, round_ndigits: int = 0):
self._round_ndigits = round_ndigits
self._start_time = timeit.default_timer()
def __call__(self) -> float:
return timeit.default_timer() - self._start_time
def __str__(self) -> str:
return str(datetime.timedelta(seconds=round(self(), self._round_ndigits)))
用法:
# Setup timer
>>> timer = Timer()
# Access as a string
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:03.
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:04.
# Access as a float
>>> timer()
6.841332235
>>> timer()
7.970274425
python cProfile和pstats模块为测量某些函数的时间提供了强大的支持,而无需在现有函数周围添加任何代码。
例如,如果您有python脚本timeFunctions.py:
import time
def hello():
print "Hello :)"
time.sleep(0.1)
def thankyou():
print "Thank you!"
time.sleep(0.05)
for idx in range(10):
hello()
for idx in range(100):
thankyou()
要运行探查器并生成文件的统计信息,只需运行:
python -m cProfile -o timeStats.profile timeFunctions.py
这是在使用cProfile模块来评测timeFunctions.py中的所有函数,并在timeStats.profile文件中收集统计信息。注意,我们不必向现有模块(timeFunctions.py)添加任何代码,这可以通过任何模块来完成。
一旦有了stats文件,就可以按如下方式运行pstats模块:
python -m pstats timeStats.profile
这将运行交互式统计浏览器,它为您提供了许多不错的功能。对于您的特定用例,您可以只检查函数的统计信息。在我们的示例中,检查两个函数的统计信息显示如下:
Welcome to the profile statistics browser.
timeStats.profile% stats hello
<timestamp> timeStats.profile
224 function calls in 6.014 seconds
Random listing order was used
List reduced from 6 to 1 due to restriction <'hello'>
ncalls tottime percall cumtime percall filename:lineno(function)
10 0.000 0.000 1.001 0.100 timeFunctions.py:3(hello)
timeStats.profile% stats thankyou
<timestamp> timeStats.profile
224 function calls in 6.014 seconds
Random listing order was used
List reduced from 6 to 1 due to restriction <'thankyou'>
ncalls tottime percall cumtime percall filename:lineno(function)
100 0.002 0.000 5.012 0.050 timeFunctions.py:7(thankyou)
这个假例子做不了什么,但给了你一个可以做什么的想法。这种方法最好的一点是,我不必编辑任何现有代码来获取这些数字,并且显然有助于分析。
我喜欢简单(python 3):
from timeit import timeit
timeit(lambda: print("hello"))
单个执行的输出为微秒:
2.430883963010274
说明:timeit默认执行匿名函数100万次,结果以秒为单位。因此,1次执行的结果相同,但平均以微秒为单位。
对于速度较慢的操作,添加较少的迭代次数,否则您可能会一直等待:
import time
timeit(lambda: time.sleep(1.5), number=1)
总迭代次数的输出始终以秒为单位:
1.5015795179999714
这里有一个很好的文档记录和完全类型提示的装饰器,我将其用作通用工具:
from functools import wraps
from time import perf_counter
from typing import Any, Callable, Optional, TypeVar, cast
F = TypeVar("F", bound=Callable[..., Any])
def timer(prefix: Optional[str] = None, precision: int = 6) -> Callable[[F], F]:
"""Use as a decorator to time the execution of any function.
Args:
prefix: String to print before the time taken.
Default is the name of the function.
precision: How many decimals to include in the seconds value.
Examples:
>>> @timer()
... def foo(x):
... return x
>>> foo(123)
foo: 0.000...s
123
>>> @timer("Time taken: ", 2)
... def foo(x):
... return x
>>> foo(123)
Time taken: 0.00s
123
"""
def decorator(func: F) -> F:
@wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
nonlocal prefix
prefix = prefix if prefix is not None else f"{func.__name__}: "
start = perf_counter()
result = func(*args, **kwargs)
end = perf_counter()
print(f"{prefix}{end - start:.{precision}f}s")
return result
return cast(F, wrapper)
return decorator
示例用法:
from timer import timer
@timer(precision=9)
def takes_long(x: int) -> bool:
return x in (i for i in range(x + 1))
result = takes_long(10**8)
print(result)
输出:耗时:4.942629056秒真的
可以通过以下方式检查doctest:
$ python3 -m doctest --verbose -o=ELLIPSIS timer.py
类型提示:
$ mypy timer.py
对于Python 3
如果使用时间模块,则可以获取当前时间戳,然后执行代码,然后再次获取时间戳。现在,所用时间将是第一个时间戳减去第二个时间戳:
import time
first_stamp = int(round(time.time() * 1000))
# YOUR CODE GOES HERE
time.sleep(5)
second_stamp = int(round(time.time() * 1000))
# Calculate the time taken in milliseconds
time_taken = second_stamp - first_stamp
# To get time in seconds:
time_taken_seconds = round(time_taken / 1000)
print(f'{time_taken_seconds} seconds or {time_taken} milliseconds')