我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
我喜欢简单(python 3):
from timeit import timeit
timeit(lambda: print("hello"))
单个执行的输出为微秒:
2.430883963010274
说明:timeit默认执行匿名函数100万次,结果以秒为单位。因此,1次执行的结果相同,但平均以微秒为单位。
对于速度较慢的操作,添加较少的迭代次数,否则您可能会一直等待:
import time
timeit(lambda: time.sleep(1.5), number=1)
总迭代次数的输出始终以秒为单位:
1.5015795179999714
其他回答
(仅使用Ipython)您可以使用%timeit来测量平均处理时间:
def foo():
print "hello"
然后:
%timeit foo()
结果如下:
10000 loops, best of 3: 27 µs per loop
使用time.time来测量执行情况,可以获得命令的总体执行时间,包括计算机上其他进程花费的运行时间。这是用户注意到的时候,但如果你想比较不同的代码片段/算法/函数/。。。
有关timeit的更多信息:
使用timeit模块timeit–对少量Python代码的执行进行计时
如果您想深入了解剖析:
http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code如何评测python脚本?
更新:我使用http://pythonhosted.org/line_profiler/在过去的一年中,我们做了很多工作,发现它非常有用,建议使用它来代替Pythons配置文件模块。
对于Python 3
如果使用时间模块,则可以获取当前时间戳,然后执行代码,然后再次获取时间戳。现在,所用时间将是第一个时间戳减去第二个时间戳:
import time
first_stamp = int(round(time.time() * 1000))
# YOUR CODE GOES HERE
time.sleep(5)
second_stamp = int(round(time.time() * 1000))
# Calculate the time taken in milliseconds
time_taken = second_stamp - first_stamp
# To get time in seconds:
time_taken_seconds = round(time_taken / 1000)
print(f'{time_taken_seconds} seconds or {time_taken} milliseconds')
使用time.time()测量两点之间经过的墙上时钟时间:
import time
start = time.time()
print("hello")
end = time.time()
print(end - start)
这给出了以秒为单位的执行时间。
Python 3.3之后的另一个选项可能是使用perf_counter或process_time,具体取决于您的需求。在3.3之前,建议使用time.clock(感谢Amber)。但是,它目前已被弃用:
在Unix上,将当前处理器时间作为浮点数返回以秒表示。准确度,事实上就是定义“处理器时间”的含义取决于C函数的含义具有相同名称。在Windows上,此函数返回自该函数的第一次调用,作为浮点数,基于Win32函数QueryPerformanceCounter()。分辨率通常为优于一微秒。自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),根据您的要求,要有明确的行为。
下面是另一个用于计时代码的上下文管理器-
用法:
from benchmark import benchmark
with benchmark("Test 1+1"):
1+1
=>
Test 1+1 : 1.41e-06 seconds
或者,如果您需要时间值
with benchmark("Test 1+1") as b:
1+1
print(b.time)
=>
Test 1+1 : 7.05e-07 seconds
7.05233786763e-07
基准.py:
from timeit import default_timer as timer
class benchmark(object):
def __init__(self, msg, fmt="%0.3g"):
self.msg = msg
self.fmt = fmt
def __enter__(self):
self.start = timer()
return self
def __exit__(self, *args):
t = timer() - self.start
print(("%s : " + self.fmt + " seconds") % (self.msg, t))
self.time = t
改编自http://dabeaz.blogspot.fr/2010/02/context-manager-for-timing-benchmarks.html