我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
我喜欢简单(python 3):
from timeit import timeit
timeit(lambda: print("hello"))
单个执行的输出为微秒:
2.430883963010274
说明:timeit默认执行匿名函数100万次,结果以秒为单位。因此,1次执行的结果相同,但平均以微秒为单位。
对于速度较慢的操作,添加较少的迭代次数,否则您可能会一直等待:
import time
timeit(lambda: time.sleep(1.5), number=1)
总迭代次数的输出始终以秒为单位:
1.5015795179999714
其他回答
如果您想方便地对函数计时,可以使用一个简单的修饰符:
import time
def timing_decorator(func):
def wrapper(*args, **kwargs):
start = time.perf_counter()
original_return_val = func(*args, **kwargs)
end = time.perf_counter()
print("time elapsed in ", func.__name__, ": ", end - start, sep='')
return original_return_val
return wrapper
您可以在您希望计时的函数上使用它,如下所示:
@timing_decorator
def function_to_time():
time.sleep(1)
function_to_time()
无论何时调用function_to_time,它都会打印所用的时间和正在计时的函数的名称。
使用一个上下文管理器可以很有趣地做到这一点,它可以自动记住进入with块时的开始时间,然后在块退出时冻结结束时间。通过一些小技巧,您甚至可以从同一个上下文管理器函数获得块内的运行时间计数。
核心库没有这个(但可能应该有)。一旦就位,您可以执行以下操作:
with elapsed_timer() as elapsed:
# some lengthy code
print( "midpoint at %.2f seconds" % elapsed() ) # time so far
# other lengthy code
print( "all done at %.2f seconds" % elapsed() )
以下是足以完成此任务的contextmanager代码:
from contextlib import contextmanager
from timeit import default_timer
@contextmanager
def elapsed_timer():
start = default_timer()
elapser = lambda: default_timer() - start
yield lambda: elapser()
end = default_timer()
elapser = lambda: end-start
以及一些可运行的演示代码:
import time
with elapsed_timer() as elapsed:
time.sleep(1)
print(elapsed())
time.sleep(2)
print(elapsed())
time.sleep(3)
注意,通过设计此函数,elapsed()的返回值在块退出时被冻结,并且进一步的调用返回相同的持续时间(在这个玩具示例中大约为6秒)。
使用time.time()测量两点之间经过的墙上时钟时间:
import time
start = time.time()
print("hello")
end = time.time()
print(end - start)
这给出了以秒为单位的执行时间。
Python 3.3之后的另一个选项可能是使用perf_counter或process_time,具体取决于您的需求。在3.3之前,建议使用time.clock(感谢Amber)。但是,它目前已被弃用:
在Unix上,将当前处理器时间作为浮点数返回以秒表示。准确度,事实上就是定义“处理器时间”的含义取决于C函数的含义具有相同名称。在Windows上,此函数返回自该函数的第一次调用,作为浮点数,基于Win32函数QueryPerformanceCounter()。分辨率通常为优于一微秒。自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),根据您的要求,要有明确的行为。
这种独特的基于类的方法提供了可打印的字符串表示、可自定义的舍入,以及以字符串或浮点形式方便地访问经过的时间。它是用Python 3.7开发的。
import datetime
import timeit
class Timer:
"""Measure time used."""
# Ref: https://stackoverflow.com/a/57931660/
def __init__(self, round_ndigits: int = 0):
self._round_ndigits = round_ndigits
self._start_time = timeit.default_timer()
def __call__(self) -> float:
return timeit.default_timer() - self._start_time
def __str__(self) -> str:
return str(datetime.timedelta(seconds=round(self(), self._round_ndigits)))
用法:
# Setup timer
>>> timer = Timer()
# Access as a string
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:03.
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:04.
# Access as a float
>>> timer()
6.841332235
>>> timer()
7.970274425
如何测量两次操作之间的时间。比较两次操作的时间。
import time
b = (123*321)*123
t1 = time.time()
c = ((9999^123)*321)^123
t2 = time.time()
print(t2-t1)
7.987022399902344e-05