我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
以下是我在阅读了许多好答案以及其他几篇文章之后的发现。
首先,如果你在timeit和time.time之间进行辩论,timeit有两个优点:
timeit选择操作系统和Python版本上可用的最佳计时器。然而,timeit禁用垃圾收集,这不是您可能想要或不想要的。
现在的问题是,时间并不是那么简单,因为它需要设置,当你有大量的导入时,事情会变得很糟糕。理想情况下,您只需要一个装饰器或使用块和度量时间。不幸的是,没有内置功能可用于此,因此您有两个选项:
选项1:使用时间预算库
timebudget是一个多功能且非常简单的库,您可以在pip安装后仅在一行代码中使用它。
@timebudget # Record how long this function takes
def my_method():
# my code
选项2:使用我的小模块
我创建了一个名为timing.py的计时实用程序模块。只需将这个文件放到项目中并开始使用它。唯一的外部依赖是runstats,它同样很小。
现在,只需在函数前面放置一个装饰器,就可以对任何函数计时:
import timing
@timing.MeasureTime
def MyBigFunc():
#do something time consuming
for i in range(10000):
print(i)
timing.print_all_timings()
如果您想对代码的一部分计时,只需将其放入块中:
import timing
#somewhere in my code
with timing.MeasureBlockTime("MyBlock"):
#do something time consuming
for i in range(10000):
print(i)
# rest of my code
timing.print_all_timings()
优势:
有几个半备份版本,所以我想指出几个亮点:
出于前面描述的原因,请使用timeit中的计时器,而不是time.time。如果需要,可以在计时期间禁用GC。Decorator接受带有命名或未命名参数的函数。能够在块计时中禁用打印(与timing.MeasureBlockTime()一起使用为t,然后为t.passed)。能够为块计时启用gc。
其他回答
(仅使用Ipython)您可以使用%timeit来测量平均处理时间:
def foo():
print "hello"
然后:
%timeit foo()
结果如下:
10000 loops, best of 3: 27 µs per loop
使用探查器模块。它提供了非常详细的概况。
import profile
profile.run('main()')
它输出类似于:
5 function calls in 0.047 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 :0(exec)
1 0.047 0.047 0.047 0.047 :0(setprofile)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
0 0.000 0.000 profile:0(profiler)
1 0.000 0.000 0.047 0.047 profile:0(main())
1 0.000 0.000 0.000 0.000 two_sum.py:2(twoSum)
我发现它很有启发性。
python cProfile和pstats模块为测量某些函数的时间提供了强大的支持,而无需在现有函数周围添加任何代码。
例如,如果您有python脚本timeFunctions.py:
import time
def hello():
print "Hello :)"
time.sleep(0.1)
def thankyou():
print "Thank you!"
time.sleep(0.05)
for idx in range(10):
hello()
for idx in range(100):
thankyou()
要运行探查器并生成文件的统计信息,只需运行:
python -m cProfile -o timeStats.profile timeFunctions.py
这是在使用cProfile模块来评测timeFunctions.py中的所有函数,并在timeStats.profile文件中收集统计信息。注意,我们不必向现有模块(timeFunctions.py)添加任何代码,这可以通过任何模块来完成。
一旦有了stats文件,就可以按如下方式运行pstats模块:
python -m pstats timeStats.profile
这将运行交互式统计浏览器,它为您提供了许多不错的功能。对于您的特定用例,您可以只检查函数的统计信息。在我们的示例中,检查两个函数的统计信息显示如下:
Welcome to the profile statistics browser.
timeStats.profile% stats hello
<timestamp> timeStats.profile
224 function calls in 6.014 seconds
Random listing order was used
List reduced from 6 to 1 due to restriction <'hello'>
ncalls tottime percall cumtime percall filename:lineno(function)
10 0.000 0.000 1.001 0.100 timeFunctions.py:3(hello)
timeStats.profile% stats thankyou
<timestamp> timeStats.profile
224 function calls in 6.014 seconds
Random listing order was used
List reduced from 6 to 1 due to restriction <'thankyou'>
ncalls tottime percall cumtime percall filename:lineno(function)
100 0.002 0.000 5.012 0.050 timeFunctions.py:7(thankyou)
这个假例子做不了什么,但给了你一个可以做什么的想法。这种方法最好的一点是,我不必编辑任何现有代码来获取这些数字,并且显然有助于分析。
这种独特的基于类的方法提供了可打印的字符串表示、可自定义的舍入,以及以字符串或浮点形式方便地访问经过的时间。它是用Python 3.7开发的。
import datetime
import timeit
class Timer:
"""Measure time used."""
# Ref: https://stackoverflow.com/a/57931660/
def __init__(self, round_ndigits: int = 0):
self._round_ndigits = round_ndigits
self._start_time = timeit.default_timer()
def __call__(self) -> float:
return timeit.default_timer() - self._start_time
def __str__(self) -> str:
return str(datetime.timedelta(seconds=round(self(), self._round_ndigits)))
用法:
# Setup timer
>>> timer = Timer()
# Access as a string
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:03.
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:04.
# Access as a float
>>> timer()
6.841332235
>>> timer()
7.970274425
使用time.time()测量两点之间经过的墙上时钟时间:
import time
start = time.time()
print("hello")
end = time.time()
print(end - start)
这给出了以秒为单位的执行时间。
Python 3.3之后的另一个选项可能是使用perf_counter或process_time,具体取决于您的需求。在3.3之前,建议使用time.clock(感谢Amber)。但是,它目前已被弃用:
在Unix上,将当前处理器时间作为浮点数返回以秒表示。准确度,事实上就是定义“处理器时间”的含义取决于C函数的含义具有相同名称。在Windows上,此函数返回自该函数的第一次调用,作为浮点数,基于Win32函数QueryPerformanceCounter()。分辨率通常为优于一微秒。自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),根据您的要求,要有明确的行为。