我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
仅Python 3:
由于从Python 3.3开始,time.cclock()已被弃用,因此您将希望使用time.perf_counter()进行系统范围的计时,或使用time.process_time()进行进程范围的计时(就像您以前使用time.cclok()的方式一样):
import time
t = time.process_time()
#do some stuff
elapsed_time = time.process_time() - t
新函数process_time将不包括睡眠期间经过的时间。
其他回答
使用探查器模块。它提供了非常详细的概况。
import profile
profile.run('main()')
它输出类似于:
5 function calls in 0.047 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 :0(exec)
1 0.047 0.047 0.047 0.047 :0(setprofile)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
0 0.000 0.000 profile:0(profiler)
1 0.000 0.000 0.047 0.047 profile:0(main())
1 0.000 0.000 0.000 0.000 two_sum.py:2(twoSum)
我发现它很有启发性。
测量时间(秒):
from timeit import default_timer as timer
from datetime import timedelta
start = timer()
# ....
# (your code runs here)
# ...
end = timer()
print(timedelta(seconds=end-start))
输出:
0:00:01.946339
使用一个上下文管理器可以很有趣地做到这一点,它可以自动记住进入with块时的开始时间,然后在块退出时冻结结束时间。通过一些小技巧,您甚至可以从同一个上下文管理器函数获得块内的运行时间计数。
核心库没有这个(但可能应该有)。一旦就位,您可以执行以下操作:
with elapsed_timer() as elapsed:
# some lengthy code
print( "midpoint at %.2f seconds" % elapsed() ) # time so far
# other lengthy code
print( "all done at %.2f seconds" % elapsed() )
以下是足以完成此任务的contextmanager代码:
from contextlib import contextmanager
from timeit import default_timer
@contextmanager
def elapsed_timer():
start = default_timer()
elapser = lambda: default_timer() - start
yield lambda: elapser()
end = default_timer()
elapser = lambda: end-start
以及一些可运行的演示代码:
import time
with elapsed_timer() as elapsed:
time.sleep(1)
print(elapsed())
time.sleep(2)
print(elapsed())
time.sleep(3)
注意,通过设计此函数,elapsed()的返回值在块退出时被冻结,并且进一步的调用返回相同的持续时间(在这个玩具示例中大约为6秒)。
以下是一个答案,使用:
对代码片段进行计时的简洁上下文管理器time.perf_counter()计算时间增量。与time.time()相反,它是不可调整的(sysadmin和守护程序都不能更改其值),因此应该首选它(参见文档)python3.10+(因为键入,但可以很容易地适应以前的版本)
import time
from contextlib import contextmanager
from typing import Iterator
@contextmanager
def time_it() -> Iterator[None]:
tic: float = time.perf_counter()
try:
yield
finally:
toc: float = time.perf_counter()
print(f"Computation time = {1000*(toc - tic):.3f}ms")
如何使用它的示例:
# Example: vector dot product computation
with time_it():
A = B = range(1000000)
dot = sum(a*b for a,b in zip(A,B))
# Computation time = 95.353ms
附录
import time
# to check adjustability
assert time.get_clock_info('time').adjustable
assert time.get_clock_info('perf_counter').adjustable is False
使用time.time()测量两点之间经过的墙上时钟时间:
import time
start = time.time()
print("hello")
end = time.time()
print(end - start)
这给出了以秒为单位的执行时间。
Python 3.3之后的另一个选项可能是使用perf_counter或process_time,具体取决于您的需求。在3.3之前,建议使用time.clock(感谢Amber)。但是,它目前已被弃用:
在Unix上,将当前处理器时间作为浮点数返回以秒表示。准确度,事实上就是定义“处理器时间”的含义取决于C函数的含义具有相同名称。在Windows上,此函数返回自该函数的第一次调用,作为浮点数,基于Win32函数QueryPerformanceCounter()。分辨率通常为优于一微秒。自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),根据您的要求,要有明确的行为。