我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

import time

def getElapsedTime(startTime, units):
    elapsedInSeconds = time.time() - startTime
    if units == 'sec':
        return elapsedInSeconds
    if units == 'min':
        return elapsedInSeconds/60
    if units == 'hour':
        return elapsedInSeconds/(60*60)

其他回答

使用time.time()测量两点之间经过的墙上时钟时间:

import time

start = time.time()
print("hello")
end = time.time()
print(end - start)

这给出了以秒为单位的执行时间。


Python 3.3之后的另一个选项可能是使用perf_counter或process_time,具体取决于您的需求。在3.3之前,建议使用time.clock(感谢Amber)。但是,它目前已被弃用:

在Unix上,将当前处理器时间作为浮点数返回以秒表示。准确度,事实上就是定义“处理器时间”的含义取决于C函数的含义具有相同名称。在Windows上,此函数返回自该函数的第一次调用,作为浮点数,基于Win32函数QueryPerformanceCounter()。分辨率通常为优于一微秒。自3.3版起已弃用:此函数的行为取决于在平台上:改用perf_counter()或process_time(),根据您的要求,要有明确的行为。

python cProfile和pstats模块为测量某些函数的时间提供了强大的支持,而无需在现有函数周围添加任何代码。

例如,如果您有python脚本timeFunctions.py:

import time

def hello():
    print "Hello :)"
    time.sleep(0.1)

def thankyou():
    print "Thank you!"
    time.sleep(0.05)

for idx in range(10):
    hello()

for idx in range(100):
    thankyou()

要运行探查器并生成文件的统计信息,只需运行:

python -m cProfile -o timeStats.profile timeFunctions.py

这是在使用cProfile模块来评测timeFunctions.py中的所有函数,并在timeStats.profile文件中收集统计信息。注意,我们不必向现有模块(timeFunctions.py)添加任何代码,这可以通过任何模块来完成。

一旦有了stats文件,就可以按如下方式运行pstats模块:

python -m pstats timeStats.profile

这将运行交互式统计浏览器,它为您提供了许多不错的功能。对于您的特定用例,您可以只检查函数的统计信息。在我们的示例中,检查两个函数的统计信息显示如下:

Welcome to the profile statistics browser.
timeStats.profile% stats hello
<timestamp>    timeStats.profile

         224 function calls in 6.014 seconds

   Random listing order was used
   List reduced from 6 to 1 due to restriction <'hello'>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       10    0.000    0.000    1.001    0.100 timeFunctions.py:3(hello)

timeStats.profile% stats thankyou
<timestamp>    timeStats.profile

         224 function calls in 6.014 seconds

   Random listing order was used
   List reduced from 6 to 1 due to restriction <'thankyou'>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
      100    0.002    0.000    5.012    0.050 timeFunctions.py:7(thankyou)

这个假例子做不了什么,但给了你一个可以做什么的想法。这种方法最好的一点是,我不必编辑任何现有代码来获取这些数字,并且显然有助于分析。

仅Python 3:

由于从Python 3.3开始,time.cclock()已被弃用,因此您将希望使用time.perf_counter()进行系统范围的计时,或使用time.process_time()进行进程范围的计时(就像您以前使用time.cclok()的方式一样):

import time

t = time.process_time()
#do some stuff
elapsed_time = time.process_time() - t

新函数process_time将不包括睡眠期间经过的时间。

要深入了解递归调用的每个函数,请执行以下操作:

%load_ext snakeviz
%%snakeviz

它只需要在Jupyter笔记本中使用这两行代码,就可以生成一个很好的交互图。例如:

这是代码。同样,以%开头的2行是使用snakeviz所需的唯一额外代码行:

# !pip install snakeviz
%load_ext snakeviz
import glob
import hashlib

%%snakeviz

files = glob.glob('*.txt')
def print_files_hashed(files):
    for file in files:
        with open(file) as f:
            print(hashlib.md5(f.read().encode('utf-8')).hexdigest())
print_files_hashed(files)

在笔记本外运行snakeviz似乎也是可能的。更多信息请访问snakeviz网站。

时间也可以通过%timeit魔法函数测量,如下所示:

%timeit -t -n 1 print("hello")

n 1仅用于运行功能1次。