我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
以下是一个答案,使用:
对代码片段进行计时的简洁上下文管理器time.perf_counter()计算时间增量。与time.time()相反,它是不可调整的(sysadmin和守护程序都不能更改其值),因此应该首选它(参见文档)python3.10+(因为键入,但可以很容易地适应以前的版本)
import time
from contextlib import contextmanager
from typing import Iterator
@contextmanager
def time_it() -> Iterator[None]:
tic: float = time.perf_counter()
try:
yield
finally:
toc: float = time.perf_counter()
print(f"Computation time = {1000*(toc - tic):.3f}ms")
如何使用它的示例:
# Example: vector dot product computation
with time_it():
A = B = range(1000000)
dot = sum(a*b for a,b in zip(A,B))
# Computation time = 95.353ms
附录
import time
# to check adjustability
assert time.get_clock_info('time').adjustable
assert time.get_clock_info('perf_counter').adjustable is False
其他回答
测量小代码片段的执行时间。
时间单位:以秒为单位,以浮点数表示
import timeit
t = timeit.Timer('li = list(map(lambda x:x*2,[1,2,3,4,5]))')
t.timeit()
t.repeat()
>[1.2934070999999676, 1.3335035000000062, 1.422568500000125]
repeat()方法可以方便地多次调用timeit()并返回结果列表。重复(重复=3)¶有了这个列表,我们可以计算所有时间的平均值。默认情况下,timeit()在计时期间暂时关闭垃圾收集。time.Timer()解决了这个问题。赞成的意见:timeit.Timer()使独立计时更具可比性。gc可能是被测函数性能的重要组成部分。如果是,gc(垃圾收集器)可以作为设置字符串中的第一条语句重新启用。例如:timeit.Timer('li=列表(映射(lambda x:x*2,[1,2,3,4,5])',设置='gc.enable()')
源Python文档!
时间也可以通过%timeit魔法函数测量,如下所示:
%timeit -t -n 1 print("hello")
n 1仅用于运行功能1次。
这里有一个很好的文档记录和完全类型提示的装饰器,我将其用作通用工具:
from functools import wraps
from time import perf_counter
from typing import Any, Callable, Optional, TypeVar, cast
F = TypeVar("F", bound=Callable[..., Any])
def timer(prefix: Optional[str] = None, precision: int = 6) -> Callable[[F], F]:
"""Use as a decorator to time the execution of any function.
Args:
prefix: String to print before the time taken.
Default is the name of the function.
precision: How many decimals to include in the seconds value.
Examples:
>>> @timer()
... def foo(x):
... return x
>>> foo(123)
foo: 0.000...s
123
>>> @timer("Time taken: ", 2)
... def foo(x):
... return x
>>> foo(123)
Time taken: 0.00s
123
"""
def decorator(func: F) -> F:
@wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
nonlocal prefix
prefix = prefix if prefix is not None else f"{func.__name__}: "
start = perf_counter()
result = func(*args, **kwargs)
end = perf_counter()
print(f"{prefix}{end - start:.{precision}f}s")
return result
return cast(F, wrapper)
return decorator
示例用法:
from timer import timer
@timer(precision=9)
def takes_long(x: int) -> bool:
return x in (i for i in range(x + 1))
result = takes_long(10**8)
print(result)
输出:耗时:4.942629056秒真的
可以通过以下方式检查doctest:
$ python3 -m doctest --verbose -o=ELLIPSIS timer.py
类型提示:
$ mypy timer.py
给定要计时的函数,
测试.py:
def foo():
# print "hello"
return "hello"
使用timeit的最简单方法是从命令行调用它:
% python -mtimeit -s'import test' 'test.foo()'
1000000 loops, best of 3: 0.254 usec per loop
不要尝试使用time.time或time.clock(天真地)来比较函数的速度。他们会给出误导性的结果。
PS.不要将打印语句放在您希望计时的函数中;否则测量的时间将取决于终端的速度。
我更喜欢这个。timeit医生太令人困惑了。
from datetime import datetime
start_time = datetime.now()
# INSERT YOUR CODE
time_elapsed = datetime.now() - start_time
print('Time elapsed (hh:mm:ss.ms) {}'.format(time_elapsed))
注意,这里没有进行任何格式化,我只是在打印输出中写入hh:mm:ss,以便可以解释time_elapsed