我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

作为lambda,获取经过的时间和时间戳:

import datetime
t_set = lambda: datetime.datetime.now().astimezone().replace(microsecond=0)
t_diff = lambda t: str(t_set() - t)
t_stamp = lambda t=None: str(t) if t else str(t_set())

在实践中:

>>> 
>>> t_set()
datetime.datetime(2021, 3, 21, 1, 25, 17, tzinfo=datetime.timezone(datetime.timedelta(days=-1, seconds=61200), 'PDT'))
>>> t = t_set()
>>> t_diff(t)
'0:00:14'
>>> t_diff(t)
'0:00:23'
>>> t_stamp()
'2021-03-21 01:25:57-07:00'
>>> t_stamp(t)
'2021-03-21 01:25:22-07:00'
>>> 

其他回答

使用探查器模块。它提供了非常详细的概况。

import profile
profile.run('main()')

它输出类似于:

          5 function calls in 0.047 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.000    0.000 :0(exec)
        1    0.047    0.047    0.047    0.047 :0(setprofile)
        1    0.000    0.000    0.000    0.000 <string>:1(<module>)
        0    0.000             0.000          profile:0(profiler)
        1    0.000    0.000    0.047    0.047 profile:0(main())
        1    0.000    0.000    0.000    0.000 two_sum.py:2(twoSum)

我发现它很有启发性。

(仅使用Ipython)您可以使用%timeit来测量平均处理时间:

def foo():
    print "hello"

然后:

%timeit foo()

结果如下:

10000 loops, best of 3: 27 µs per loop

这里有一个很好的文档记录和完全类型提示的装饰器,我将其用作通用工具:

from functools import wraps
from time import perf_counter
from typing import Any, Callable, Optional, TypeVar, cast

F = TypeVar("F", bound=Callable[..., Any])


def timer(prefix: Optional[str] = None, precision: int = 6) -> Callable[[F], F]:
    """Use as a decorator to time the execution of any function.

    Args:
        prefix: String to print before the time taken.
            Default is the name of the function.
        precision: How many decimals to include in the seconds value.

    Examples:
        >>> @timer()
        ... def foo(x):
        ...     return x
        >>> foo(123)
        foo: 0.000...s
        123
        >>> @timer("Time taken: ", 2)
        ... def foo(x):
        ...     return x
        >>> foo(123)
        Time taken: 0.00s
        123

    """
    def decorator(func: F) -> F:
        @wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:
            nonlocal prefix
            prefix = prefix if prefix is not None else f"{func.__name__}: "
            start = perf_counter()
            result = func(*args, **kwargs)
            end = perf_counter()
            print(f"{prefix}{end - start:.{precision}f}s")
            return result
        return cast(F, wrapper)
    return decorator

示例用法:

from timer import timer


@timer(precision=9)
def takes_long(x: int) -> bool:
    return x in (i for i in range(x + 1))


result = takes_long(10**8)
print(result)

输出:耗时:4.942629056秒真的

可以通过以下方式检查doctest:

$ python3 -m doctest --verbose -o=ELLIPSIS timer.py

类型提示:

$ mypy timer.py

print_elapsed_time函数如下

def print_elapsed_time(prefix=''):
    e_time = time.time()
    if not hasattr(print_elapsed_time, 's_time'):
        print_elapsed_time.s_time = e_time
    else:
        print(f'{prefix} elapsed time: {e_time - print_elapsed_time.s_time:.2f} sec')
        print_elapsed_time.s_time = e_time

用这种方式

print_elapsed_time()
.... heavy jobs ...
print_elapsed_time('after heavy jobs')
.... tons of jobs ...
print_elapsed_time('after tons of jobs')

结果是

after heavy jobs elapsed time: 0.39 sec
after tons of jobs elapsed time: 0.60 sec  

这个函数的优点和缺点是你不需要经过开始时间

仅Python 3:

由于从Python 3.3开始,time.cclock()已被弃用,因此您将希望使用time.perf_counter()进行系统范围的计时,或使用time.process_time()进行进程范围的计时(就像您以前使用time.cclok()的方式一样):

import time

t = time.process_time()
#do some stuff
elapsed_time = time.process_time() - t

新函数process_time将不包括睡眠期间经过的时间。