我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
测量小代码片段的执行时间。
时间单位:以秒为单位,以浮点数表示
import timeit
t = timeit.Timer('li = list(map(lambda x:x*2,[1,2,3,4,5]))')
t.timeit()
t.repeat()
>[1.2934070999999676, 1.3335035000000062, 1.422568500000125]
repeat()方法可以方便地多次调用timeit()并返回结果列表。重复(重复=3)¶有了这个列表,我们可以计算所有时间的平均值。默认情况下,timeit()在计时期间暂时关闭垃圾收集。time.Timer()解决了这个问题。赞成的意见:timeit.Timer()使独立计时更具可比性。gc可能是被测函数性能的重要组成部分。如果是,gc(垃圾收集器)可以作为设置字符串中的第一条语句重新启用。例如:timeit.Timer('li=列表(映射(lambda x:x*2,[1,2,3,4,5])',设置='gc.enable()')
源Python文档!
其他回答
这里有一个很好的文档记录和完全类型提示的装饰器,我将其用作通用工具:
from functools import wraps
from time import perf_counter
from typing import Any, Callable, Optional, TypeVar, cast
F = TypeVar("F", bound=Callable[..., Any])
def timer(prefix: Optional[str] = None, precision: int = 6) -> Callable[[F], F]:
"""Use as a decorator to time the execution of any function.
Args:
prefix: String to print before the time taken.
Default is the name of the function.
precision: How many decimals to include in the seconds value.
Examples:
>>> @timer()
... def foo(x):
... return x
>>> foo(123)
foo: 0.000...s
123
>>> @timer("Time taken: ", 2)
... def foo(x):
... return x
>>> foo(123)
Time taken: 0.00s
123
"""
def decorator(func: F) -> F:
@wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
nonlocal prefix
prefix = prefix if prefix is not None else f"{func.__name__}: "
start = perf_counter()
result = func(*args, **kwargs)
end = perf_counter()
print(f"{prefix}{end - start:.{precision}f}s")
return result
return cast(F, wrapper)
return decorator
示例用法:
from timer import timer
@timer(precision=9)
def takes_long(x: int) -> bool:
return x in (i for i in range(x + 1))
result = takes_long(10**8)
print(result)
输出:耗时:4.942629056秒真的
可以通过以下方式检查doctest:
$ python3 -m doctest --verbose -o=ELLIPSIS timer.py
类型提示:
$ mypy timer.py
使用timeit.default_timer而不是timeit.timeit。前者自动提供您的平台和Python版本上可用的最佳时钟:
from timeit import default_timer as timer
start = timer()
# ...
end = timer()
print(end - start) # Time in seconds, e.g. 5.38091952400282
timeit.default_timer被分配给time.time()或time.clock(),具体取决于操作系统。在Python 3.3+default_timer上,所有平台上都有time.perf_counter()。请参见Python-time.cclock()与time.time()-精度?
另请参见:
正在优化代码如何优化速度
我更喜欢这个。timeit医生太令人困惑了。
from datetime import datetime
start_time = datetime.now()
# INSERT YOUR CODE
time_elapsed = datetime.now() - start_time
print('Time elapsed (hh:mm:ss.ms) {}'.format(time_elapsed))
注意,这里没有进行任何格式化,我只是在打印输出中写入hh:mm:ss,以便可以解释time_elapsed
import time
def getElapsedTime(startTime, units):
elapsedInSeconds = time.time() - startTime
if units == 'sec':
return elapsedInSeconds
if units == 'min':
return elapsedInSeconds/60
if units == 'hour':
return elapsedInSeconds/(60*60)
你可以使用timeit。
下面是一个示例,说明如何使用Python REPL测试naive_func,该函数接受参数:
>>> import timeit
>>> def naive_func(x):
... a = 0
... for i in range(a):
... a += i
... return a
>>> def wrapper(func, *args, **kwargs):
... def wrapper():
... return func(*args, **kwargs)
... return wrapper
>>> wrapped = wrapper(naive_func, 1_000)
>>> timeit.timeit(wrapped, number=1_000_000)
0.4458435332577161
若函数并没有任何参数,那个么就不需要包装函数。