我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
我想测量执行一个函数所花费的时间。我没时间工作:
import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
当前回答
测量小代码片段的执行时间。
时间单位:以秒为单位,以浮点数表示
import timeit
t = timeit.Timer('li = list(map(lambda x:x*2,[1,2,3,4,5]))')
t.timeit()
t.repeat()
>[1.2934070999999676, 1.3335035000000062, 1.422568500000125]
repeat()方法可以方便地多次调用timeit()并返回结果列表。重复(重复=3)¶有了这个列表,我们可以计算所有时间的平均值。默认情况下,timeit()在计时期间暂时关闭垃圾收集。time.Timer()解决了这个问题。赞成的意见:timeit.Timer()使独立计时更具可比性。gc可能是被测函数性能的重要组成部分。如果是,gc(垃圾收集器)可以作为设置字符串中的第一条语句重新启用。例如:timeit.Timer('li=列表(映射(lambda x:x*2,[1,2,3,4,5])',设置='gc.enable()')
源Python文档!
其他回答
时间也可以通过%timeit魔法函数测量,如下所示:
%timeit -t -n 1 print("hello")
n 1仅用于运行功能1次。
我更喜欢这个。timeit医生太令人困惑了。
from datetime import datetime
start_time = datetime.now()
# INSERT YOUR CODE
time_elapsed = datetime.now() - start_time
print('Time elapsed (hh:mm:ss.ms) {}'.format(time_elapsed))
注意,这里没有进行任何格式化,我只是在打印输出中写入hh:mm:ss,以便可以解释time_elapsed
作为lambda,获取经过的时间和时间戳:
import datetime
t_set = lambda: datetime.datetime.now().astimezone().replace(microsecond=0)
t_diff = lambda t: str(t_set() - t)
t_stamp = lambda t=None: str(t) if t else str(t_set())
在实践中:
>>>
>>> t_set()
datetime.datetime(2021, 3, 21, 1, 25, 17, tzinfo=datetime.timezone(datetime.timedelta(days=-1, seconds=61200), 'PDT'))
>>> t = t_set()
>>> t_diff(t)
'0:00:14'
>>> t_diff(t)
'0:00:23'
>>> t_stamp()
'2021-03-21 01:25:57-07:00'
>>> t_stamp(t)
'2021-03-21 01:25:22-07:00'
>>>
import time
def getElapsedTime(startTime, units):
elapsedInSeconds = time.time() - startTime
if units == 'sec':
return elapsedInSeconds
if units == 'min':
return elapsedInSeconds/60
if units == 'hour':
return elapsedInSeconds/(60*60)
以下是我在阅读了许多好答案以及其他几篇文章之后的发现。
首先,如果你在timeit和time.time之间进行辩论,timeit有两个优点:
timeit选择操作系统和Python版本上可用的最佳计时器。然而,timeit禁用垃圾收集,这不是您可能想要或不想要的。
现在的问题是,时间并不是那么简单,因为它需要设置,当你有大量的导入时,事情会变得很糟糕。理想情况下,您只需要一个装饰器或使用块和度量时间。不幸的是,没有内置功能可用于此,因此您有两个选项:
选项1:使用时间预算库
timebudget是一个多功能且非常简单的库,您可以在pip安装后仅在一行代码中使用它。
@timebudget # Record how long this function takes
def my_method():
# my code
选项2:使用我的小模块
我创建了一个名为timing.py的计时实用程序模块。只需将这个文件放到项目中并开始使用它。唯一的外部依赖是runstats,它同样很小。
现在,只需在函数前面放置一个装饰器,就可以对任何函数计时:
import timing
@timing.MeasureTime
def MyBigFunc():
#do something time consuming
for i in range(10000):
print(i)
timing.print_all_timings()
如果您想对代码的一部分计时,只需将其放入块中:
import timing
#somewhere in my code
with timing.MeasureBlockTime("MyBlock"):
#do something time consuming
for i in range(10000):
print(i)
# rest of my code
timing.print_all_timings()
优势:
有几个半备份版本,所以我想指出几个亮点:
出于前面描述的原因,请使用timeit中的计时器,而不是time.time。如果需要,可以在计时期间禁用GC。Decorator接受带有命名或未命名参数的函数。能够在块计时中禁用打印(与timing.MeasureBlockTime()一起使用为t,然后为t.passed)。能够为块计时启用gc。