我想测量执行一个函数所花费的时间。我没时间工作:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)

当前回答

我为此做了一个库,如果你想测量一个函数,你可以这样做


from pythonbenchmark import compare, measure
import time

a,b,c,d,e = 10,10,10,10,10
something = [a,b,c,d,e]

@measure
def myFunction(something):
    time.sleep(0.4)

@measure
def myOptimizedFunction(something):
    time.sleep(0.2)

myFunction(input)
myOptimizedFunction(input)

https://github.com/Karlheinzniebuhr/pythonbenchmark

其他回答

timeit模块适合对一小段Python代码进行计时。它至少可以三种形式使用:

1-作为命令行模块

python2 -m timeit 'for i in xrange(10): oct(i)' 

2-对于短代码,将其作为参数传递。

import timeit
timeit.Timer('for i in xrange(10): oct(i)').timeit()

3-对于较长的代码,如:

import timeit
code_to_test = """
a = range(100000)
b = []
for i in a:
    b.append(i*2)
"""
elapsed_time = timeit.timeit(code_to_test, number=100)/100
print(elapsed_time)

我参加聚会已经很晚了,但这种方法以前没有涉及过。当我们想要手动对某段代码进行基准测试时,我们可能需要首先找出哪些类方法占用了执行时间,这有时并不明显。我构建了以下元类来解决这个问题:

from __future__ import annotations

from functools import wraps
from time import time
from typing import Any, Callable, TypeVar, cast

F = TypeVar('F', bound=Callable[..., Any])


def timed_method(func: F, prefix: str | None = None) -> F:
    prefix = (prefix + ' ') if prefix else ''

    @wraps(func)
    def inner(*args, **kwargs):  # type: ignore
        start = time()
        try:
            ret = func(*args, **kwargs)
        except BaseException:
            print(f'[ERROR] {prefix}{func.__qualname__}: {time() - start}')
            raise
        
        print(f'{prefix}{func.__qualname__}: {time() - start}')
        return ret

    return cast(F, inner)


class TimedClass(type):
    def __new__(
        cls: type[TimedClass],
        name: str,
        bases: tuple[type[type], ...],
        attrs: dict[str, Any],
        **kwargs: Any,
    ) -> TimedClass:
        for name, attr in attrs.items():
            if isinstance(attr, (classmethod, staticmethod)):
                attrs[name] = type(attr)(timed_method(attr.__func__))
            elif isinstance(attr, property):
                attrs[name] = property(
                    timed_method(attr.fget, 'get') if attr.fget is not None else None,
                    timed_method(attr.fset, 'set') if attr.fset is not None else None,
                    timed_method(attr.fdel, 'del') if attr.fdel is not None else None,
                )
            elif callable(attr):
                attrs[name] = timed_method(attr)

        return super().__new__(cls, name, bases, attrs)

它允许如下使用:

class MyClass(metaclass=TimedClass):
    def foo(self): 
        print('foo')
    
    @classmethod
    def bar(cls): 
        print('bar')
    
    @staticmethod
    def baz(): 
        print('baz')
    
    @property
    def prop(self): 
        print('prop')
    
    @prop.setter
    def prop(self, v): 
        print('fset')
    
    @prop.deleter
    def prop(self): 
        print('fdel')


c = MyClass()

c.foo()
c.bar()
c.baz()
c.prop
c.prop = 2
del c.prop

MyClass.bar()
MyClass.baz()

它打印:

foo
MyClass.foo: 1.621246337890625e-05
bar
MyClass.bar: 4.5299530029296875e-06
baz
MyClass.baz: 4.291534423828125e-06
prop
get MyClass.prop: 3.814697265625e-06
fset
set MyClass.prop: 3.5762786865234375e-06
fdel
del MyClass.prop: 3.5762786865234375e-06
bar
MyClass.bar: 3.814697265625e-06
baz
MyClass.baz: 4.0531158447265625e-06

它可以与其他答案相结合,以更精确的方式代替time.time。

在python3上:

from time import sleep, perf_counter as pc
t0 = pc()
sleep(1)
print(pc()-t0)

优雅而短小。

如果您想方便地对函数计时,可以使用一个简单的修饰符:

import time

def timing_decorator(func):
    def wrapper(*args, **kwargs):
        start = time.perf_counter()
        original_return_val = func(*args, **kwargs)
        end = time.perf_counter()
        print("time elapsed in ", func.__name__, ": ", end - start, sep='')
        return original_return_val

    return wrapper

您可以在您希望计时的函数上使用它,如下所示:

@timing_decorator
def function_to_time():
    time.sleep(1)

function_to_time()

无论何时调用function_to_time,它都会打印所用的时间和正在计时的函数的名称。

虽然问题中没有严格要求,但通常情况下,您需要一种简单、统一的方法来递增地测量几行代码之间的经过时间。

如果您使用的是Python 3.8或更高版本,则可以使用赋值表达式(也称为walrus运算符)以相当优雅的方式实现这一点:

import time

start, times = time.perf_counter(), {}

print("hello")
times["print"] = -start + (start := time.perf_counter())

time.sleep(1.42)
times["sleep"] = -start + (start := time.perf_counter())

a = [n**2 for n in range(10000)]
times["pow"] = -start + (start := time.perf_counter())

print(times)

=>

{'print': 2.193450927734375e-05, 'sleep': 1.4210970401763916, 'power': 0.005671024322509766}