要检验一个数是不是质数,为什么我们要检验它是否只能被这个数的平方根整除?
当前回答
其实就是基本的因式分解和平方根。
它可能看起来很抽象,但实际上它只是在于这样一个事实,即一个非质数的最大可能阶乘必须是它的平方根,因为:
sqrroot(n) * sqrroot(n) = n。
鉴于此,如果任何大于1且小于或大于√(n)的整数能被n整除,则n不可能是质数。
伪代码示例:
i = 2;
is_prime = true;
while loop (i <= sqrroot(n))
{
if (n % i == 0)
{
is_prime = false;
exit while;
}
++i;
}
其他回答
假设m =根号n,那么m × m = n。如果n不是质数,那么n可以写成n = a × b,所以m × m = a × b。注意,m是实数,而n、a和b是自然数。
现在有三种情况:
A > m⇒b < m ⇒A = m, b = m A < m⇒b > m
在这三种情况下,min(a, b)≤m。因此,如果我们搜索到m,我们一定会找到n的至少一个因子,这足以证明n不是质数。
如果一个数n不是质数,它可以被分解成两个因子a和b:
n = a * b
现在a和b不可能都大于根号n,因为这样a * b就会大于根号n *根号n = n,所以在n的任何因式分解中,至少有一个因子必须小于根号n,如果我们找不到任何小于或等于根号的因子,n一定是质数。
假设我们有一个数字“a”,它不是质数[非质数/合数的意思是-一个可以被除1或它本身以外的数字整除的数字。例如,6可以被2或3整除,也可以被1或6整除。
6 = 1 × 6或6 = 2 × 3
如果a不是质数那么它可以被另外两个数除我们设这两个数是b和c。这意味着
a = b * c。
现在如果b或c,它们中的任何一个大于a的平方根那么b和c的乘积就会大于a。
因此,“b”或“c”总是<=“a”的平方根来证明方程“a=b*c”。
由于上述原因,当我们测试一个数字是否是质数时,我们只检查到该数字的平方根。
为了测试一个数字n的质数,人们首先会期望一个循环,如下所示:
bool isPrime = true;
for(int i = 2; i < n; i++){
if(n%i == 0){
isPrime = false;
break;
}
}
上面的循环是这样做的:对于给定的1 < i < n,它检查n/i是否为整数(余数为0)。如果存在一个i,其中n/i是整数,那么我们可以确定n不是质数,此时循环终止。如果没有i, n/i是整数,那么n是素数。
和每一个算法一样,我们会问:我们能做得更好吗?
让我们看看上面的循环中发生了什么。
i的序列是:i = 2,3,4,…, n - 1
整数检查的顺序是:j = n/i,也就是n/2, n/3, n/4,…n (n - 1) /
如果对于某些i = a, n/a是一个整数,那么n/a = k(整数)
或者n = ak,显然是n > k > 1(如果k = 1,那么a = n,但我从来没有达到n;如果k = n,那么a = 1,但我从2开始
同样,n/k = a,如上所述,a是i的值,所以n > a > 1。
所以,a和k都是1和n之间的整数(排他)。由于i达到了该范围内的每一个整数,在某个迭代i = a时,在另一个迭代i = k时。如果n的质数检验对于min(a,k)失败,那么对于max(a,k)也会失败。所以我们只需要检查这两种情况中的一种,除非min(a,k) = max(a,k)(其中两次检查减少为一次),即a = k,此时a*a = n,这意味着a =根号(n)。
换句话说,如果n的质数检验对于某些i >=√(n)(即max(a,k))失败,那么对于某些i <= n(即min(a,k))也会失败。因此,如果我们运行i = 2到根号n的测试就足够了。
假设给定的整数N不是质数,
则N可分解为a和b两个因子,2 <= a, b < N使N = a*b。 显然,它们不能同时大于根号N。
让我们不失一般性地假设a更小。
现在,如果你找不到N的任何除数在[2,根号(N)]范围内,这意味着什么?
这意味着当N <=√(N)时,N在[2,a]中没有任何除数。
因此,a = 1且b = n,因此根据定义,n是素数。
...
如果您不满意,请继续阅读:
(a, b)可能有许多不同的组合。假设它们是:
(a1, b1), (a2, b2), (a3, b3), ....., (ak, bk)。在不失一般性的前提下,假设ai < bi, 1<= i <=k。
现在,为了证明N不是质数它足以证明ai都不能被进一步分解。我们还知道ai <=根号N,因此你需要检查根号N,这将涵盖所有ai。这样你就能得出N是不是质数。
...