要检验一个数是不是质数,为什么我们要检验它是否只能被这个数的平方根整除?


当前回答

其实就是基本的因式分解和平方根。

它可能看起来很抽象,但实际上它只是在于这样一个事实,即一个非质数的最大可能阶乘必须是它的平方根,因为:

sqrroot(n) * sqrroot(n) = n。

鉴于此,如果任何大于1且小于或大于√(n)的整数能被n整除,则n不可能是质数。

伪代码示例:

i = 2;

is_prime = true;

while loop (i <= sqrroot(n))
{
  if (n % i == 0)
  {
    is_prime = false;
    exit while;
  }
  ++i;
}

其他回答

设n是非素数。因此,它至少有两个大于1的整数因子。设f是n个这样的因子中最小的。设f >√n,则n/f是一个≤√n的整数,因此小于f,因此f不可能是n的最小因子。反证法;N的最小因子必须≤根号N。

任何合数都是质数的乘积。

假设n = p1 * p2,其中p2 > p1,它们都是质数。

如果n % p1 === 0,则n是一个合数。

如果n % p2 === 0,那么猜猜n % p1 === 0 !

因此,如果n % p2 === 0,同时n % p1 !== 0,这是不可能的。 换句话说,如果一个合数n能被 p2、p3……PI(较大因子)也要除以最小因子p1。 事实证明,最低因子p1 <= Math.square(n)总是正确的。

如果一个数n不是质数,它可以被分解成两个因子a和b:

n = a * b

现在a和b不可能都大于根号n,因为这样a * b就会大于根号n *根号n = n,所以在n的任何因式分解中,至少有一个因子必须小于根号n,如果我们找不到任何小于或等于根号的因子,n一定是质数。

因为如果一个因子大于根号n,那么与它相乘等于n的另一个因子必然小于根号n。

假设m =根号n,那么m × m = n。如果n不是质数,那么n可以写成n = a × b,所以m × m = a × b。注意,m是实数,而n、a和b是自然数。

现在有三种情况:

A > m⇒b < m ⇒A = m, b = m A < m⇒b > m

在这三种情况下,min(a, b)≤m。因此,如果我们搜索到m,我们一定会找到n的至少一个因子,这足以证明n不是质数。