要检验一个数是不是质数,为什么我们要检验它是否只能被这个数的平方根整除?
当前回答
是的,正如上面所解释的,迭代到Math就足够了。对一个数的平方根取底,以检查其质数(因为SQRT涵盖了所有可能的除法情况;和数学。因为任何高于SQRT的整数已经超出了它的范围)。
下面是一个可运行的JavaScript代码片段,它代表了这种方法的简单实现-它的“运行时友好性”足以处理相当大的数字(我试着检查质数和非质数,最大可达10**12,即1万亿,将结果与在线质数数据库进行比较,即使在我的廉价手机上也没有遇到错误或延迟):
function isPrime(num) { if (num % 2 === 0 || num < 3 || !Number.isSafeInteger(num)) { return num === 2; } else { const sqrt = Math.floor(Math.sqrt(num)); for (let i = 3; i <= sqrt; i += 2) { if (num % i === 0) return false; } return true; } } <label for="inp">Enter a number and click "Check!":</label><br> <input type="number" id="inp"></input> <button onclick="alert(isPrime(+document.getElementById('inp').value) ? 'Prime' : 'Not prime')" type="button">Check!</button>
其他回答
如果一个数n不是质数,它可以被分解成两个因子a和b:
n = a * b
现在a和b不可能都大于根号n,因为这样a * b就会大于根号n *根号n = n,所以在n的任何因式分解中,至少有一个因子必须小于根号n,如果我们找不到任何小于或等于根号的因子,n一定是质数。
因为如果一个因子大于根号n,那么与它相乘等于n的另一个因子必然小于根号n。
假设给定的整数N不是质数,
则N可分解为a和b两个因子,2 <= a, b < N使N = a*b。 显然,它们不能同时大于根号N。
让我们不失一般性地假设a更小。
现在,如果你找不到N的任何除数在[2,根号(N)]范围内,这意味着什么?
这意味着当N <=√(N)时,N在[2,a]中没有任何除数。
因此,a = 1且b = n,因此根据定义,n是素数。
...
如果您不满意,请继续阅读:
(a, b)可能有许多不同的组合。假设它们是:
(a1, b1), (a2, b2), (a3, b3), ....., (ak, bk)。在不失一般性的前提下,假设ai < bi, 1<= i <=k。
现在,为了证明N不是质数它足以证明ai都不能被进一步分解。我们还知道ai <=根号N,因此你需要检查根号N,这将涵盖所有ai。这样你就能得出N是不是质数。
...
假设我们有一个数字“a”,它不是质数[非质数/合数的意思是-一个可以被除1或它本身以外的数字整除的数字。例如,6可以被2或3整除,也可以被1或6整除。
6 = 1 × 6或6 = 2 × 3
如果a不是质数那么它可以被另外两个数除我们设这两个数是b和c。这意味着
a = b * c。
现在如果b或c,它们中的任何一个大于a的平方根那么b和c的乘积就会大于a。
因此,“b”或“c”总是<=“a”的平方根来证明方程“a=b*c”。
由于上述原因,当我们测试一个数字是否是质数时,我们只检查到该数字的平方根。
设n是非素数。因此,它至少有两个大于1的整数因子。设f是n个这样的因子中最小的。设f >√n,则n/f是一个≤√n的整数,因此小于f,因此f不可能是n的最小因子。反证法;N的最小因子必须≤根号N。