要检验一个数是不是质数,为什么我们要检验它是否只能被这个数的平方根整除?
当前回答
是的,正如上面所解释的,迭代到Math就足够了。对一个数的平方根取底,以检查其质数(因为SQRT涵盖了所有可能的除法情况;和数学。因为任何高于SQRT的整数已经超出了它的范围)。
下面是一个可运行的JavaScript代码片段,它代表了这种方法的简单实现-它的“运行时友好性”足以处理相当大的数字(我试着检查质数和非质数,最大可达10**12,即1万亿,将结果与在线质数数据库进行比较,即使在我的廉价手机上也没有遇到错误或延迟):
function isPrime(num) { if (num % 2 === 0 || num < 3 || !Number.isSafeInteger(num)) { return num === 2; } else { const sqrt = Math.floor(Math.sqrt(num)); for (let i = 3; i <= sqrt; i += 2) { if (num % i === 0) return false; } return true; } } <label for="inp">Enter a number and click "Check!":</label><br> <input type="number" id="inp"></input> <button onclick="alert(isPrime(+document.getElementById('inp').value) ? 'Prime' : 'Not prime')" type="button">Check!</button>
其他回答
假设m =根号n,那么m × m = n。如果n不是质数,那么n可以写成n = a × b,所以m × m = a × b。注意,m是实数,而n、a和b是自然数。
现在有三种情况:
A > m⇒b < m ⇒A = m, b = m A < m⇒b > m
在这三种情况下,min(a, b)≤m。因此,如果我们搜索到m,我们一定会找到n的至少一个因子,这足以证明n不是质数。
假设n不是一个质数(大于1),那么有数字a和b满足
n = ab (1 < a <= b < n)
通过将a<=b的关系乘以a和b,我们得到:
a^2 <= ab
ab <= b^2
因此:(注意n=ab)
a^2 <= n <= b^2
因此:(注意a和b是正的)
a <= sqrt(n) <= b
因此,如果一个数(大于1)不是质数,并且我们测试到该数的平方根的可除性,我们将找到其中一个因数。
假设给定的整数N不是质数,
则N可分解为a和b两个因子,2 <= a, b < N使N = a*b。 显然,它们不能同时大于根号N。
让我们不失一般性地假设a更小。
现在,如果你找不到N的任何除数在[2,根号(N)]范围内,这意味着什么?
这意味着当N <=√(N)时,N在[2,a]中没有任何除数。
因此,a = 1且b = n,因此根据定义,n是素数。
...
如果您不满意,请继续阅读:
(a, b)可能有许多不同的组合。假设它们是:
(a1, b1), (a2, b2), (a3, b3), ....., (ak, bk)。在不失一般性的前提下,假设ai < bi, 1<= i <=k。
现在,为了证明N不是质数它足以证明ai都不能被进一步分解。我们还知道ai <=根号N,因此你需要检查根号N,这将涵盖所有ai。这样你就能得出N是不是质数。
...
是的,正如上面所解释的,迭代到Math就足够了。对一个数的平方根取底,以检查其质数(因为SQRT涵盖了所有可能的除法情况;和数学。因为任何高于SQRT的整数已经超出了它的范围)。
下面是一个可运行的JavaScript代码片段,它代表了这种方法的简单实现-它的“运行时友好性”足以处理相当大的数字(我试着检查质数和非质数,最大可达10**12,即1万亿,将结果与在线质数数据库进行比较,即使在我的廉价手机上也没有遇到错误或延迟):
function isPrime(num) { if (num % 2 === 0 || num < 3 || !Number.isSafeInteger(num)) { return num === 2; } else { const sqrt = Math.floor(Math.sqrt(num)); for (let i = 3; i <= sqrt; i += 2) { if (num % i === 0) return false; } return true; } } <label for="inp">Enter a number and click "Check!":</label><br> <input type="number" id="inp"></input> <button onclick="alert(isPrime(+document.getElementById('inp').value) ? 'Prime' : 'Not prime')" type="button">Check!</button>
因为如果一个因子大于根号n,那么与它相乘等于n的另一个因子必然小于根号n。