要检验一个数是不是质数,为什么我们要检验它是否只能被这个数的平方根整除?
当前回答
任何合数都是质数的乘积。
假设n = p1 * p2,其中p2 > p1,它们都是质数。
如果n % p1 === 0,则n是一个合数。
如果n % p2 === 0,那么猜猜n % p1 === 0 !
因此,如果n % p2 === 0,同时n % p1 !== 0,这是不可能的。 换句话说,如果一个合数n能被 p2、p3……PI(较大因子)也要除以最小因子p1。 事实证明,最低因子p1 <= Math.square(n)总是正确的。
其他回答
对于任意数n,求因数的一种方法是求根号p:
sqrt(n) = p
当然,如果我们用p乘以它自己,就会得到n:
p*p = n
可以改写为:
a*b = n
其中p = a = b,如果a增加,则b减少,以保持a*b = n,因此p为上限。
Update: I am re-reading this answer again today and it became clearer to me more. The value p does not necessarily mean an integer because if it is, then n would not be a prime. So, p could be a real number (ie, with fractions). And instead of going through the whole range of n, now we only need to go through the whole range of p. The other p is a mirror copy so in effect we halve the range. And then, now I am seeing that we can actually continue re-doing the square root and doing it to p to further half the range.
为了检验一个数N是不是质数。 我们只需要检查N是否能被<=SQROOT(N)的数整除。这是因为,如果我们把N分解成任意两个因子比如X和Y。N = XY。 X和Y都不能小于SQROOT(N)因为XY < N X和Y都不能大于SQROOT(N)因为X*Y >n
因此,一个因子必须小于或等于SQROOT(N)(而另一个因子大于或等于SQROOT(N))。 因此,要检查N是否为质数,我们只需要检查那些<= SQROOT(N)的数字。
如果一个数n不是质数,它可以被分解成两个因子a和b:
n = a * b
现在a和b不可能都大于根号n,因为这样a * b就会大于根号n *根号n = n,所以在n的任何因式分解中,至少有一个因子必须小于根号n,如果我们找不到任何小于或等于根号的因子,n一定是质数。
假设n不是一个质数(大于1),那么有数字a和b满足
n = ab (1 < a <= b < n)
通过将a<=b的关系乘以a和b,我们得到:
a^2 <= ab
ab <= b^2
因此:(注意n=ab)
a^2 <= n <= b^2
因此:(注意a和b是正的)
a <= sqrt(n) <= b
因此,如果一个数(大于1)不是质数,并且我们测试到该数的平方根的可除性,我们将找到其中一个因数。
因为如果一个因子大于根号n,那么与它相乘等于n的另一个因子必然小于根号n。
推荐文章
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何使用JavaScript比较软件版本号?数量(只)
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 两个长度不等的表之间的排列
- 给出一个图像来表示和解决一个迷宫
- 如何在使用归并排序算法排序?