要检验一个数是不是质数,为什么我们要检验它是否只能被这个数的平方根整除?
当前回答
设n是非素数。因此,它至少有两个大于1的整数因子。设f是n个这样的因子中最小的。设f >√n,则n/f是一个≤√n的整数,因此小于f,因此f不可能是n的最小因子。反证法;N的最小因子必须≤根号N。
其他回答
其实就是基本的因式分解和平方根。
它可能看起来很抽象,但实际上它只是在于这样一个事实,即一个非质数的最大可能阶乘必须是它的平方根,因为:
sqrroot(n) * sqrroot(n) = n。
鉴于此,如果任何大于1且小于或大于√(n)的整数能被n整除,则n不可能是质数。
伪代码示例:
i = 2;
is_prime = true;
while loop (i <= sqrroot(n))
{
if (n % i == 0)
{
is_prime = false;
exit while;
}
++i;
}
假设n不是一个质数(大于1),那么有数字a和b满足
n = ab (1 < a <= b < n)
通过将a<=b的关系乘以a和b,我们得到:
a^2 <= ab
ab <= b^2
因此:(注意n=ab)
a^2 <= n <= b^2
因此:(注意a和b是正的)
a <= sqrt(n) <= b
因此,如果一个数(大于1)不是质数,并且我们测试到该数的平方根的可除性,我们将找到其中一个因数。
假设m =根号n,那么m × m = n。如果n不是质数,那么n可以写成n = a × b,所以m × m = a × b。注意,m是实数,而n、a和b是自然数。
现在有三种情况:
A > m⇒b < m ⇒A = m, b = m A < m⇒b > m
在这三种情况下,min(a, b)≤m。因此,如果我们搜索到m,我们一定会找到n的至少一个因子,这足以证明n不是质数。
因为如果一个因子大于根号n,那么与它相乘等于n的另一个因子必然小于根号n。
如果一个数n不是质数,它可以被分解成两个因子a和b:
n = a * b
现在a和b不可能都大于根号n,因为这样a * b就会大于根号n *根号n = n,所以在n的任何因式分解中,至少有一个因子必须小于根号n,如果我们找不到任何小于或等于根号的因子,n一定是质数。
推荐文章
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何使用JavaScript比较软件版本号?数量(只)
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 两个长度不等的表之间的排列
- 给出一个图像来表示和解决一个迷宫
- 如何在使用归并排序算法排序?