一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

boolean atLeastTwo(boolean a, boolean b, boolean c) 
{
  return ((a && b) || (b && c) || (a && c));
}

其他回答

One thing I haven't seen others point out is that a standard thing to do in the "please write me some code" section of the job interview is to say "Could you improve that?" or "Are you completely happy with that" or "is that as optimized as possible?" when you say you are done. It's possible you heard "how would you improve that" as "this might be improved; how?". In this case changing the if(x) return true; else return false; idiom to just return x is an improvement - but be aware that there are times they just want to see how you react to the question. I have heard that some interviewers will insist there is a flaw in perfect code just to see how you cope with it.

还有一种不太好的方法:

return (Boolean.valueOf(a).hashCode() + Boolean.valueOf(b).hashCode() + Boolean.valueOf(c).hashCode()) < 3705);

布尔哈希码值固定为true为1231,false为1237,因此同样可以使用<= 3699

最简单的方式(IMO),不容易混淆,容易阅读:

// Three booleans, check if two or more are true

return ( a && ( b || c ) ) || ( b && c );

这类问题可以用卡诺图来解决:

      | C | !C
------|---|----
 A  B | 1 | 1 
 A !B | 1 | 0
!A !B | 0 | 0
!A  B | 1 | 0

由此推断,第一行需要一组,第一列需要两组,得到聚基因润滑剂的最优解:

(C && (A || B)) || (A && B)  <---- first row
       ^
       |
   first column without third case

为什么不逐字执行呢?:)

(a?1:0)+(b?1:0)+(c?1:0) >= 2

在C语言中,你可以写a+b+ C >= 2(或者!!a+!! !b+!! !C >= 2,非常安全)。

为了回应TofuBeer对java字节码的比较,这里有一个简单的性能测试:

class Main
{
    static boolean majorityDEAD(boolean a,boolean b,boolean c)
    {
        return a;
    }

    static boolean majority1(boolean a,boolean b,boolean c)
    {
        return a&&b || b&&c || a&&c;
    }

    static boolean majority2(boolean a,boolean b,boolean c)
    {
        return a ? b||c : b&&c;
    }

    static boolean majority3(boolean a,boolean b,boolean c)
    {
        return a&b | b&c | c&a;
    }

    static boolean majority4(boolean a,boolean b,boolean c)
    {
        return (a?1:0)+(b?1:0)+(c?1:0) >= 2;
    }

    static int loop1(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority1(data[i], data[j], data[k])?1:0; 
                sum += majority1(data[i], data[k], data[j])?1:0; 
                sum += majority1(data[j], data[k], data[i])?1:0; 
                sum += majority1(data[j], data[i], data[k])?1:0; 
                sum += majority1(data[k], data[i], data[j])?1:0; 
                sum += majority1(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loop2(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority2(data[i], data[j], data[k])?1:0; 
                sum += majority2(data[i], data[k], data[j])?1:0; 
                sum += majority2(data[j], data[k], data[i])?1:0; 
                sum += majority2(data[j], data[i], data[k])?1:0; 
                sum += majority2(data[k], data[i], data[j])?1:0; 
                sum += majority2(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loop3(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority3(data[i], data[j], data[k])?1:0; 
                sum += majority3(data[i], data[k], data[j])?1:0; 
                sum += majority3(data[j], data[k], data[i])?1:0; 
                sum += majority3(data[j], data[i], data[k])?1:0; 
                sum += majority3(data[k], data[i], data[j])?1:0; 
                sum += majority3(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loop4(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority4(data[i], data[j], data[k])?1:0; 
                sum += majority4(data[i], data[k], data[j])?1:0; 
                sum += majority4(data[j], data[k], data[i])?1:0; 
                sum += majority4(data[j], data[i], data[k])?1:0; 
                sum += majority4(data[k], data[i], data[j])?1:0; 
                sum += majority4(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loopDEAD(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majorityDEAD(data[i], data[j], data[k])?1:0; 
                sum += majorityDEAD(data[i], data[k], data[j])?1:0; 
                sum += majorityDEAD(data[j], data[k], data[i])?1:0; 
                sum += majorityDEAD(data[j], data[i], data[k])?1:0; 
                sum += majorityDEAD(data[k], data[i], data[j])?1:0; 
                sum += majorityDEAD(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static void work()
    {
        boolean [] data = new boolean [10000];
        java.util.Random r = new java.util.Random(0);
        for(int i=0;i<data.length;i++)
            data[i] = r.nextInt(2) > 0;
        long t0,t1,t2,t3,t4,tDEAD;
        int sz1 = 100;
        int sz2 = 100;
        int sum = 0;

        t0 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop1(data, i, sz1, sz2);

        t1 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop2(data, i, sz1, sz2);

        t2 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop3(data, i, sz1, sz2);

        t3 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop4(data, i, sz1, sz2);

        t4 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loopDEAD(data, i, sz1, sz2);

        tDEAD = System.currentTimeMillis();

        System.out.println("a&&b || b&&c || a&&c : " + (t1-t0) + " ms");
        System.out.println("   a ? b||c : b&&c   : " + (t2-t1) + " ms");
        System.out.println("   a&b | b&c | c&a   : " + (t3-t2) + " ms");
        System.out.println("   a + b + c >= 2    : " + (t4-t3) + " ms");
        System.out.println("       DEAD          : " + (tDEAD-t4) + " ms");
        System.out.println("sum: "+sum);
    }

    public static void main(String[] args) throws InterruptedException
    {
        while(true)
        {
            work();
            Thread.sleep(1000);
        }
    }
}

这将在我的机器上打印以下内容(在Intel Core 2 + sun java 1.6.0_15-b03上运行Ubuntu,带有HotSpot Server VM (14.1-b02,混合模式):

第一次和第二次迭代:

a&&b || b&&c || a&&c : 1740 ms
   a ? b||c : b&&c   : 1690 ms
   a&b | b&c | c&a   : 835 ms
   a + b + c >= 2    : 348 ms
       DEAD          : 169 ms
sum: 1472612418

后来迭代:

a&&b || b&&c || a&&c : 1638 ms
   a ? b||c : b&&c   : 1612 ms
   a&b | b&c | c&a   : 779 ms
   a + b + c >= 2    : 905 ms
       DEAD          : 221 ms

我想知道,对于(a + b + c >= 2)情况,java虚拟机可以做什么来降低性能。

下面是如果我用-client VM开关运行java会发生什么:

a&&b || b&&c || a&&c : 4034 ms
   a ? b||c : b&&c   : 2215 ms
   a&b | b&c | c&a   : 1347 ms
   a + b + c >= 2    : 6589 ms
       DEAD          : 1016 ms

神秘……

如果我在GNU Java解释器中运行它,它会变慢近100倍,但是a&&b || b&&c || a&&c版本胜出。

在运行OS X的最新代码中,豆腐啤酒的结果:

a&&b || b&&c || a&&c : 1358 ms
   a ? b||c : b&&c   : 1187 ms
   a&b | b&c | c&a   : 410 ms
   a + b + c >= 2    : 602 ms
       DEAD          : 161 ms

Paul Wagland使用Mac Java 1.6.0_26-b03-383-11A511的结果

a&&b || b&&c || a&&c : 394 ms 
   a ? b||c : b&&c   : 435 ms
   a&b | b&c | c&a   : 420 ms
   a + b + c >= 2    : 640 ms
   a ^ b ? c : a     : 571 ms
   a != b ? c : a    : 487 ms
       DEAD          : 170 ms