一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

最明显的改进是:

// There is no point in an else if you already returned.
boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    return false;
}

然后

// There is no point in an if(true) return true otherwise return false.
boolean atLeastTwo(boolean a, boolean b, boolean c) {
    return ((a && b) || (b && c) || (a && c));
}

但这些改进都是微不足道的。

其他回答

X = OR(a+b,c)

a b c X

1, 1, 0, 1

0, 0, 1, 1

0, 1, 1, 1

我想我还没见过这个解决方案:

boolean atLeast(int howMany, boolean[] boolValues) {
  // check params for valid values

  int counter = 0;
  for (boolean b : boolValues) {
    if (b) {
      counter++;

      if (counter == howMany) {
        return true;
      }
    }
  }
  return false;
}

它的优点是一旦达到你要找的数字,它就会崩溃。因此,如果这是“这1,000,000个值中至少有2个是真的”,而前两个值实际上是真的,那么它应该比一些更“正常”的解更快。

return (a==b) ? a : c;

解释:

如果a==b,则两者都为真或都为假。如果两者都为真,我们已经找到了两个真布尔值,并可以返回真(通过返回a)。如果两者都为假,即使c为真,也不可能有两个真布尔值,因此我们返回假(通过返回a)。这是(a==b) ?一个部分。c呢?如果a==b为假,那么a或b中只有一个为真,所以我们找到了第一个真布尔值,剩下的唯一问题是c是否也为真,所以我们返回c作为答案。

One thing I haven't seen others point out is that a standard thing to do in the "please write me some code" section of the job interview is to say "Could you improve that?" or "Are you completely happy with that" or "is that as optimized as possible?" when you say you are done. It's possible you heard "how would you improve that" as "this might be improved; how?". In this case changing the if(x) return true; else return false; idiom to just return x is an improvement - but be aware that there are times they just want to see how you react to the question. I have heard that some interviewers will insist there is a flaw in perfect code just to see how you cope with it.

我相信使用普通的布尔运算符(a || b) && (b || c)是很好的,而且更简单。

你可以把这三个字母中的任意一个和另外两个字母中的任意一个交换它仍然是相同的表达式。