一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

我相信使用普通的布尔运算符(a || b) && (b || c)是很好的,而且更简单。

你可以把这三个字母中的任意一个和另外两个字母中的任意一个交换它仍然是相同的表达式。

其他回答

return (a==b) ? a : c;

解释:

如果a==b,则两者都为真或都为假。如果两者都为真,我们已经找到了两个真布尔值,并可以返回真(通过返回a)。如果两者都为假,即使c为真,也不可能有两个真布尔值,因此我们返回假(通过返回a)。这是(a==b) ?一个部分。c呢?如果a==b为假,那么a或b中只有一个为真,所以我们找到了第一个真布尔值,剩下的唯一问题是c是否也为真,所以我们返回c作为答案。

问题中的2和3显然是神奇的数字。“正确”的答案将取决于面试官是否试图了解你对布尔逻辑的理解(我不认为pdox的答案在这方面是最好的)或你对架构问题的理解。

我倾向于使用映射减少解决方案,它将接受任何类型的列表和任何任意条件。

我找到了这个解。

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    bool result = !(a ^ b ^ c) && !(!a & !b & !c) || (a & b & c);
    return result;
}

C:

if (!!a + !!b + !!c >= 2)

他可能不是在寻找像位比较操作符这样复杂的东西(通常不是复杂的,但使用布尔值,使用位操作符是非常奇怪的),或者像转换为int并对它们求和这样非常迂回的东西。

解决这个问题最直接和自然的方法是用这样的表达式:

a ? (b || c): (b && c)

如果你喜欢,可以把它放到一个函数里,但这并不复杂。该解决方案在逻辑上简洁有效。