一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

C解。

int two(int a, int b, int c) {
  return !a + !b + !c < 2;
}

或者你可能更喜欢:

int two(int a, int b, int c) {
  return !!a + !!b + !!c >= 2;
}

其他回答

它应该是:

(a || b && c) && (b || c && a)

此外,如果true自动转换为1,false自动转换为0:

(a + b*c) * (b + c*a) > 0

三元运算符让人觉得很无聊,但它们也会令人困惑(使代码更难维护,从而增加了注入错误的可能性)。Jeff Attwood说得很好:

这是一个权衡取舍的完美例子 毫无意义的一次 写的时候节省了几十个 阅读时间理解惩罚——它 让我思考。

为了避免三元操作符,我创建了以下函数:

function atLeastTwoTrue($a, $b, $c) {
        $count = 0;

        if ($a) { $count++; }
        if ($b) { $count++; }
        if ($c) { $count++; }

        if ($count >= 2) {
                return true;
        } else {
                return false;
        }
}

这个和其他解一样酷吗?不。这样更容易理解吗?是的。这是否会使代码更具可维护性、bug更少?是的。

我想我还没见过这个解决方案:

boolean atLeast(int howMany, boolean[] boolValues) {
  // check params for valid values

  int counter = 0;
  for (boolean b : boolValues) {
    if (b) {
      counter++;

      if (counter == howMany) {
        return true;
      }
    }
  }
  return false;
}

它的优点是一旦达到你要找的数字,它就会崩溃。因此,如果这是“这1,000,000个值中至少有2个是真的”,而前两个值实际上是真的,那么它应该比一些更“正常”的解更快。

C解。

int two(int a, int b, int c) {
  return !a + !b + !c < 2;
}

或者你可能更喜欢:

int two(int a, int b, int c) {
  return !!a + !!b + !!c >= 2;
}

If the goal is to return a bitwise two-out-of-three value for three operands, arithmetic and iterative approaches are apt to be relatively ineffective. On many CPU architectures, a good form would be "return ((a | b) & c) | (a & b);". That takes four boolean operations. On single-accumulator machines (common in small embedded systems) that's apt to take a total of seven instructions per byte. The form "return (a & b) | (a & c) | (b & c);" is perhaps nicer looking, but it would require five boolean operations, or nine instructions per byte on a single-accumulator machine.

顺便提一下,在CMOS逻辑中,计算“不是三选二”需要12个晶体管(相比之下,逆变器需要2个晶体管,双输入NAND或NOR需要4个晶体管,而三输入NAND或NOR需要6个晶体管)。