一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

最简单的方式(IMO),不容易混淆,容易阅读:

// Three booleans, check if two or more are true

return ( a && ( b || c ) ) || ( b && c );

其他回答

下面是使用map/reduce的另一个实现。在分布式环境中,这可以很好地扩展到数十亿布尔值©。使用MongoDB:

创建数据库的布尔值:

db.values.insert({value: true});
db.values.insert({value: false});
db.values.insert({value: true});

创建map, reduce函数:

编辑:我喜欢CurtainDog的回答有映射/减少适用于泛型列表,所以这里有一个地图函数,它接受一个回调,决定一个值是否应该被计数。

var mapper = function(shouldInclude) {
    return function() {
        emit(null, shouldInclude(this) ? 1 : 0);
    };
}

var reducer = function(key, values) {
    var sum = 0;
    for(var i = 0; i < values.length; i++) {
        sum += values[i];
    }
    return sum;
}

运行map / reduce:

var result = db.values.mapReduce(mapper(isTrue), reducer).result;

containsMinimum(2, result); // true
containsMinimum(1, result); // false


function isTrue(object) {
    return object.value == true;
}

function containsMinimum(count, resultDoc) {
    var record = db[resultDoc].find().next();
    return record.value >= count;
}

作为@TofuBeer TofuBeer精彩帖子的补充,考虑@pdox pdox的回答:

static boolean five(final boolean a, final boolean b, final boolean c)
{
    return a == b ? a : c;
}

再考虑一下它的分解版本,如"javap -c"所给出的:

static boolean five(boolean, boolean, boolean);
  Code:
    0:    iload_0
    1:    iload_1
    2:    if_icmpne    9
    5:    iload_0
    6:    goto    10
    9:    iload_2
   10:    ireturn

Pdox的答案编译成的字节代码比之前的任何答案都要少。它的执行时间与其他的相比如何?

one                5242 ms
two                6318 ms
three (moonshadow) 3806 ms
four               7192 ms
five  (pdox)       3650 ms

至少在我的电脑上,pdox的回答比@moonshadow moonshadow的回答稍微快一点,使得pdox的回答是最快的(在我的惠普/英特尔笔记本电脑上)。

在Clojure中:

(defn at-least [n & bools]
  (>= (count (filter true? bools)) n)

用法:

(at-least 2 true false true)

总结一下。它被称为布尔代数是有原因的:

  0 x 0 = 0
  1 x 0 = 0
  1 x 1 = 1

  0 + 0 = 0
  1 + 0 = 1
  1 + 1 = 0 (+ carry)

如果你看那里的真值表,你可以看到乘法是布尔和,而简单的加法是异或。

回答你的问题:

return (a + b + c) >= 2

这类问题可以用卡诺图来解决:

      | C | !C
------|---|----
 A  B | 1 | 1 
 A !B | 1 | 0
!A !B | 0 | 0
!A  B | 1 | 0

由此推断,第一行需要一组,第一列需要两组,得到聚基因润滑剂的最优解:

(C && (A || B)) || (A && B)  <---- first row
       ^
       |
   first column without third case