一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

总结一下。它被称为布尔代数是有原因的:

  0 x 0 = 0
  1 x 0 = 0
  1 x 1 = 1

  0 + 0 = 0
  1 + 0 = 1
  1 + 1 = 0 (+ carry)

如果你看那里的真值表,你可以看到乘法是布尔和,而简单的加法是异或。

回答你的问题:

return (a + b + c) >= 2

其他回答

另一个直接代码的例子:

int  n = 0;
if (a) n++;
if (b) n++;
if (c) n++;
return (n >= 2);

显然,这不是最简洁的代码。

齿顶高

另一个(稍微优化的)版本:

int  n = -2;
if (a) n++;
if (b) n++;
if (c) n++;
return (n >= 0);

这可能会运行得稍微快一点,假设与0的比较将比与2的比较使用更快(或更少)的代码。

C:

if (!!a + !!b + !!c >= 2)

如果我把布尔值转换成一个数字,如果这个数字不是2的幂,它至少有两个真值。

a*4 + b*2 + c*1 = N
return( N != 0 && (N&(N-1)) != 0)

我只是给出了另一种选择。

在C:

return !!a + !!b + !!c >= 2;

当我看到这个问题时,我的第一个想法是:

int count=0;
if (a)
    ++count;
if (b)
    ++count;
if (c)
    ++count;
return count>=2;

在看了其他帖子后,我承认

return (a?1:0)+(b?1:0)+(c?1:0)>=2;

更优雅。我想知道相对运行时是什么。

不过,无论如何,我认为这种解决办法比那种解决办法要好得多

return a&b | b&c | a&c;

variety because is is more easily extensible. What if later we add a fourth variable that must be tested? What if the number of variables is determined at runtime, and we are passed an array of booleans of unknown size? A solution that depends on counting is much easier to extend than a solution that depends on listing every possible combination. Also, when listing all possible combinations, I suspect that it is much easier to make a mistake. Like try writing the code for "any 3 of 4" and make sure you neither miss any nor duplicate any. Now try it with "any 5 of 7".