一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。
我的解决方案如下:
boolean atLeastTwo(boolean a, boolean b, boolean c) {
if ((a && b) || (b && c) || (a && c)) {
return true;
}
else{
return false;
}
}
他说这还可以进一步改进,但如何改进呢?
当我看到这个问题时,我的第一个想法是:
int count=0;
if (a)
++count;
if (b)
++count;
if (c)
++count;
return count>=2;
在看了其他帖子后,我承认
return (a?1:0)+(b?1:0)+(c?1:0)>=2;
更优雅。我想知道相对运行时是什么。
不过,无论如何,我认为这种解决办法比那种解决办法要好得多
return a&b | b&c | a&c;
variety because is is more easily extensible. What if later we add a fourth variable that must be tested? What if the number of variables is determined at runtime, and we are passed an array of booleans of unknown size? A solution that depends on counting is much easier to extend than a solution that depends on listing every possible combination. Also, when listing all possible combinations, I suspect that it is much easier to make a mistake. Like try writing the code for "any 3 of 4" and make sure you neither miss any nor duplicate any. Now try it with "any 5 of 7".
这真的取决于你对“改进”的定义:
清晰吗?
boolean twoOrMoreAreTrue(boolean a, boolean b, boolean c)
{
return (a && b) || (a && c) || (b && c);
}
反之亦然?
boolean moreThanTwo(boolean a, boolean b, boolean c)
{
return a == b ? a : c;
}
更一般的?
boolean moreThanXTrue(int x, boolean[] bs)
{
int count = 0;
for(boolean b : bs)
{
count += b ? 1 : 0;
if(count > x) return true;
}
return false;
}
更多的可伸缩的吗?
boolean moreThanXTrue(int x, boolean[] bs)
{
int count = 0;
for(int i < 0; i < bs.length; i++)
{
count += bs[i] ? 1 : 0;
if(count > x) return true;
int needed = x - count;
int remaining = bs.length - i;
if(needed >= remaining) return false;
}
return false;
}
更快呢?
// Only profiling can answer this.
哪一种是“改进”的,很大程度上取决于具体情况。