一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

我想我还没见过这个解决方案:

boolean atLeast(int howMany, boolean[] boolValues) {
  // check params for valid values

  int counter = 0;
  for (boolean b : boolValues) {
    if (b) {
      counter++;

      if (counter == howMany) {
        return true;
      }
    }
  }
  return false;
}

它的优点是一旦达到你要找的数字,它就会崩溃。因此,如果这是“这1,000,000个值中至少有2个是真的”,而前两个值实际上是真的,那么它应该比一些更“正常”的解更快。

其他回答

可读性应该是目标。阅读代码的人必须立即理解您的意图。这就是我的解。

int howManyBooleansAreTrue =
      (a ? 1 : 0)
    + (b ? 1 : 0)
    + (c ? 1 : 0);

return howManyBooleansAreTrue >= 2;

这个问题的最佳答案应该是:“作为一名员工,我写出来的东西很重要,这样我的意思就能清楚地表达出来,同时又能保持绩效所需的效率。”我是这样写的:

function atLeastTwoAreTrue(a, b, c) {
    return (a && b) || (b && c) || (a && c);
}

在现实中,这个测试是如此的刻意,以至于如果您用一个简单的注释来容纳它,那么编写一个最快、最神秘的方法是完全可以接受的。但是,一般来说,在这个一行代码的世界里,我们需要更多可读的代码。: -)

总结一下。它被称为布尔代数是有原因的:

  0 x 0 = 0
  1 x 0 = 0
  1 x 1 = 1

  0 + 0 = 0
  1 + 0 = 1
  1 + 1 = 0 (+ carry)

如果你看那里的真值表,你可以看到乘法是布尔和,而简单的加法是异或。

回答你的问题:

return (a + b + c) >= 2

您不需要使用运算符的短路形式。

返回(a & b) | (b & c) | (c & a);

它执行与您的版本相同数量的逻辑操作,但是完全没有分支。

当然,这个问题更多的是关于你如何解决问题/思考,而不是你实际的编码能力。

一个稍微简洁一点的版本可能是

返回((a ^ b) && (b ^ c)) ^ b

但就像之前的一个帖子说的,如果我在任何我正在编写的代码中看到这个,有人会听到很多。:)