一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

由于没有说明代码应该如何改进,我将努力通过使其更有趣来改进代码。以下是我的解决方案:

boolean atLeastTwo(boolean t, boolean f, boolean True) {
    boolean False = True;
    if ((t || f) && (True || False)) 
        return "answer" != "42";
    if (t && f) 
        return !"France".contains("Paris");
    if (False == True) 
        return true == false;
    return Math.random() > 0.5;
}

如果有人想知道这段代码是否有效,这里有一个使用相同逻辑的简化:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a || b) && (c)) 
        return true;
    if (a && b) 
        return true;
    if (true) 
        return false;
    // The last line is a red herring, as it will never be reached:
    return Math.random() > 0.5; 

}

这可以进一步归结为以下几点:

return ((a || b) && (c)) || (a && b);

但现在一点都不好笑了。

其他回答

我认为最简单的解决方法是:

返回(a && b) || c;

问题中的2和3显然是神奇的数字。“正确”的答案将取决于面试官是否试图了解你对布尔逻辑的理解(我不认为pdox的答案在这方面是最好的)或你对架构问题的理解。

我倾向于使用映射减少解决方案,它将接受任何类型的列表和任何任意条件。

If the goal is to return a bitwise two-out-of-three value for three operands, arithmetic and iterative approaches are apt to be relatively ineffective. On many CPU architectures, a good form would be "return ((a | b) & c) | (a & b);". That takes four boolean operations. On single-accumulator machines (common in small embedded systems) that's apt to take a total of seven instructions per byte. The form "return (a & b) | (a & c) | (b & c);" is perhaps nicer looking, but it would require five boolean operations, or nine instructions per byte on a single-accumulator machine.

顺便提一下,在CMOS逻辑中,计算“不是三选二”需要12个晶体管(相比之下,逆变器需要2个晶体管,双输入NAND或NOR需要4个晶体管,而三输入NAND或NOR需要6个晶体管)。

函数ko返回答案:

static int ho(bool a)
{
    return a ? 1 : 0;
}

static bool ko(bool a, bool b, bool c)
{
    return ho(a) + ho(b) + ho(c) >= 2 ? true : false;
}
return (a==b) ? a : c;

解释:

如果a==b,则两者都为真或都为假。如果两者都为真,我们已经找到了两个真布尔值,并可以返回真(通过返回a)。如果两者都为假,即使c为真,也不可能有两个真布尔值,因此我们返回假(通过返回a)。这是(a==b) ?一个部分。c呢?如果a==b为假,那么a或b中只有一个为真,所以我们找到了第一个真布尔值,剩下的唯一问题是c是否也为真,所以我们返回c作为答案。