我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
本想在GLSL中这样做,但如果可能的话,最好避免所有这些条件。使用clamp()可以避免两种端点情况:
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
float l = dot(AB, AB);
if (l <= 0.0000001) return A; // A and B are practically the same
return AP - AB*clamp(dot(AP, AB)/l, 0.0, 1.0); // do the projection
}
如果您可以确定A和B彼此不会非常接近,则可以简化为删除If()。事实上,即使A和B是相同的,我的GPU仍然给出了这个无条件版本的正确结果(但这是使用pre-OpenGL 4.1,其中GLSL除零是未定义的):
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
return AP - AB*clamp(dot(AP, AB)/dot(AB, AB), 0.0, 1.0);
}
计算距离是很简单的——GLSL提供了一个distance()函数,你可以在这个最近的点和P。
灵感来自Iñigo Quilez的胶囊距离函数代码
其他回答
Lua解决方案
-- distance from point (px, py) to line segment (x1, y1, x2, y2)
function distPointToLine(px,py,x1,y1,x2,y2) -- point, start and end of the segment
local dx,dy = x2-x1,y2-y1
local length = math.sqrt(dx*dx+dy*dy)
dx,dy = dx/length,dy/length -- normalization
local p = dx*(px-x1)+dy*(py-y1)
if p < 0 then
dx,dy = px-x1,py-y1
return math.sqrt(dx*dx+dy*dy), x1, y1 -- distance, nearest point
elseif p > length then
dx,dy = px-x2,py-y2
return math.sqrt(dx*dx+dy*dy), x2, y2 -- distance, nearest point
end
return math.abs(dy*(px-x1)-dx*(py-y1)), x1+dx*p, y1+dy*p -- distance, nearest point
end
对于折线(有两条以上线段的线):
-- if the (poly-)line has several segments, just iterate through all of them:
function nearest_sector_in_line (x, y, line)
local x1, y1, x2, y2, min_dist
local ax,ay = line[1], line[2]
for j = 3, #line-1, 2 do
local bx,by = line[j], line[j+1]
local dist = distPointToLine(x,y,ax,ay,bx,by)
if not min_dist or dist < min_dist then
min_dist = dist
x1, y1, x2, y2 = ax,ay,bx,by
end
ax, ay = bx, by
end
return x1, y1, x2, y2
end
例子:
-- call it:
local x1, y1, x2, y2 = nearest_sector_in_line (7, 4, {0,0, 10,0, 10,10, 0,10})
这是一个自成体系的Delphi / Pascal版本的函数,基于上面约书亚的答案。使用TPoint用于VCL屏幕图形,但应该易于根据需要进行调整。
function DistancePtToSegment( pt, pt1, pt2: TPoint): double;
var
a, b, c, d: double;
len_sq: double;
param: double;
xx, yy: double;
dx, dy: double;
begin
a := pt.x - pt1.x;
b := pt.y - pt1.y;
c := pt2.x - pt1.x;
d := pt2.y - pt1.y;
len_sq := (c * c) + (d * d);
param := -1;
if (len_sq <> 0) then
begin
param := ((a * c) + (b * d)) / len_sq;
end;
if param < 0 then
begin
xx := pt1.x;
yy := pt1.y;
end
else if param > 1 then
begin
xx := pt2.x;
yy := pt2.y;
end
else begin
xx := pt1.x + param * c;
yy := pt1.y + param * d;
end;
dx := pt.x - xx;
dy := pt.y - yy;
result := sqrt( (dx * dx) + (dy * dy))
end;
忍不住用python来编码:)
from math import sqrt, fabs
def pdis(a, b, c):
t = b[0]-a[0], b[1]-a[1] # Vector ab
dd = sqrt(t[0]**2+t[1]**2) # Length of ab
t = t[0]/dd, t[1]/dd # unit vector of ab
n = -t[1], t[0] # normal unit vector to ab
ac = c[0]-a[0], c[1]-a[1] # vector ac
return fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance)
print pdis((1,1), (2,2), (2,0)) # Example (answer is 1.414)
fortran也是一样:)
real function pdis(a, b, c)
real, dimension(0:1), intent(in) :: a, b, c
real, dimension(0:1) :: t, n, ac
real :: dd
t = b - a ! Vector ab
dd = sqrt(t(0)**2+t(1)**2) ! Length of ab
t = t/dd ! unit vector of ab
n = (/-t(1), t(0)/) ! normal unit vector to ab
ac = c - a ! vector ac
pdis = abs(ac(0)*n(0)+ac(1)*n(1)) ! Projection of ac to n (the minimum distance)
end function pdis
program test
print *, pdis((/1.0,1.0/), (/2.0,2.0/), (/2.0,0.0/)) ! Example (answer is 1.414)
end program test
JavaScript中一个基于这个公式的更简洁的解决方案:
distToSegment: function (point, linePointA, linePointB){
var x0 = point.X;
var y0 = point.Y;
var x1 = linePointA.X;
var y1 = linePointA.Y;
var x2 = linePointB.X;
var y2 = linePointB.Y;
var Dx = (x2 - x1);
var Dy = (y2 - y1);
var numerator = Math.abs(Dy*x0 - Dx*y0 - x1*y2 + x2*y1);
var denominator = Math.sqrt(Dx*Dx + Dy*Dy);
if (denominator == 0) {
return this.dist2(point, linePointA);
}
return numerator/denominator;
}
C#
改编自@Grumdrig
public static double MinimumDistanceToLineSegment(this Point p,
Line line)
{
var v = line.StartPoint;
var w = line.EndPoint;
double lengthSquared = DistanceSquared(v, w);
if (lengthSquared == 0.0)
return Distance(p, v);
double t = Math.Max(0, Math.Min(1, DotProduct(p - v, w - v) / lengthSquared));
var projection = v + t * (w - v);
return Distance(p, projection);
}
public static double Distance(Point a, Point b)
{
return Math.Sqrt(DistanceSquared(a, b));
}
public static double DistanceSquared(Point a, Point b)
{
var d = a - b;
return DotProduct(d, d);
}
public static double DotProduct(Point a, Point b)
{
return (a.X * b.X) + (a.Y * b.Y);
}