我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
Lua: 查找线段(不是整条线)与点之间的最小距离
function solveLinearEquation(A1,B1,C1,A2,B2,C2)
--it is the implitaion of a method of solving linear equations in x and y
local f1 = B1*C2 -B2*C1
local f2 = A2*C1-A1*C2
local f3 = A1*B2 -A2*B1
return {x= f1/f3, y= f2/f3}
end
function pointLiesOnLine(x,y,x1,y1,x2,y2)
local dx1 = x-x1
local dy1 = y-y1
local dx2 = x-x2
local dy2 = y-y2
local crossProduct = dy1*dx2 -dx1*dy2
if crossProduct ~= 0 then return false
else
if ((x1>=x) and (x>=x2)) or ((x2>=x) and (x>=x1)) then
if ((y1>=y) and (y>=y2)) or ((y2>=y) and (y>=y1)) then
return true
else return false end
else return false end
end
end
function dist(x1,y1,x2,y2)
local dx = x1-x2
local dy = y1-y2
return math.sqrt(dx*dx + dy* dy)
end
function findMinDistBetnPointAndLine(x1,y1,x2,y2,x3,y3)
-- finds the min distance between (x3,y3) and line (x1,y2)--(x2,y2)
local A2,B2,C2,A1,B1,C1
local dx = y2-y1
local dy = x2-x1
if dx == 0 then A2=1 B2=0 C2=-x3 A1=0 B1=1 C1=-y1
elseif dy == 0 then A2=0 B2=1 C2=-y3 A1=1 B1=0 C1=-x1
else
local m1 = dy/dx
local m2 = -1/m1
A2=m2 B2=-1 C2=y3-m2*x3 A1=m1 B1=-1 C1=y1-m1*x1
end
local intsecPoint= solveLinearEquation(A1,B1,C1,A2,B2,C2)
if pointLiesOnLine(intsecPoint.x, intsecPoint.y,x1,y1,x2,y2) then
return dist(intsecPoint.x, intsecPoint.y, x3,y3)
else
return math.min(dist(x3,y3,x1,y1),dist(x3,y3,x2,y2))
end
end
其他回答
特征c++版本的3D线段和点
// Return minimum distance between line segment: head--->tail and point
double MinimumDistance(Eigen::Vector3d head, Eigen::Vector3d tail,Eigen::Vector3d point)
{
double l2 = std::pow((head - tail).norm(),2);
if(l2 ==0.0) return (head - point).norm();// head == tail case
// Consider the line extending the segment, parameterized as head + t (tail - point).
// We find projection of point onto the line.
// It falls where t = [(point-head) . (tail-head)] / |tail-head|^2
// We clamp t from [0,1] to handle points outside the segment head--->tail.
double t = max(0,min(1,(point-head).dot(tail-head)/l2));
Eigen::Vector3d projection = head + t*(tail-head);
return (point - projection).norm();
}
请参见以下网站中的Matlab几何工具箱: http://people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html
按Ctrl +f,输入“segment”,查找线段相关函数。函数“segment_point_dist_2d.”和segment_point_dist_3d。M "是你需要的。
几何代码有C版本、c++版本、FORTRAN77版本、FORTRAN90版本和MATLAB版本。
Grumdrig的c++ /JavaScript实现对我来说非常有用,所以我提供了我正在使用的Python直接端口。完整的代码在这里。
class Point(object):
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def square(x):
return x * x
def distance_squared(v, w):
return square(v.x - w.x) + square(v.y - w.y)
def distance_point_segment_squared(p, v, w):
# Segment length squared, |w-v|^2
d2 = distance_squared(v, w)
if d2 == 0:
# v == w, return distance to v
return distance_squared(p, v)
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
if t < 0:
# Beyond v end of the segment
return distance_squared(p, v)
elif t > 1.0:
# Beyond w end of the segment
return distance_squared(p, w)
else:
# Projection falls on the segment.
proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
# print proj.x, proj.y
return distance_squared(p, proj)
WPF版本:
public class LineSegment
{
private readonly Vector _offset;
private readonly Vector _vector;
public LineSegment(Point start, Point end)
{
_offset = (Vector)start;
_vector = (Vector)(end - _offset);
}
public double DistanceTo(Point pt)
{
var v = (Vector)pt - _offset;
// first, find a projection point on the segment in parametric form (0..1)
var p = (v * _vector) / _vector.LengthSquared;
// and limit it so it lays inside the segment
p = Math.Min(Math.Max(p, 0), 1);
// now, find the distance from that point to our point
return (_vector * p - v).Length;
}
}
Lua: 查找线段(不是整条线)与点之间的最小距离
function solveLinearEquation(A1,B1,C1,A2,B2,C2)
--it is the implitaion of a method of solving linear equations in x and y
local f1 = B1*C2 -B2*C1
local f2 = A2*C1-A1*C2
local f3 = A1*B2 -A2*B1
return {x= f1/f3, y= f2/f3}
end
function pointLiesOnLine(x,y,x1,y1,x2,y2)
local dx1 = x-x1
local dy1 = y-y1
local dx2 = x-x2
local dy2 = y-y2
local crossProduct = dy1*dx2 -dx1*dy2
if crossProduct ~= 0 then return false
else
if ((x1>=x) and (x>=x2)) or ((x2>=x) and (x>=x1)) then
if ((y1>=y) and (y>=y2)) or ((y2>=y) and (y>=y1)) then
return true
else return false end
else return false end
end
end
function dist(x1,y1,x2,y2)
local dx = x1-x2
local dy = y1-y2
return math.sqrt(dx*dx + dy* dy)
end
function findMinDistBetnPointAndLine(x1,y1,x2,y2,x3,y3)
-- finds the min distance between (x3,y3) and line (x1,y2)--(x2,y2)
local A2,B2,C2,A1,B1,C1
local dx = y2-y1
local dy = x2-x1
if dx == 0 then A2=1 B2=0 C2=-x3 A1=0 B1=1 C1=-y1
elseif dy == 0 then A2=0 B2=1 C2=-y3 A1=1 B1=0 C1=-x1
else
local m1 = dy/dx
local m2 = -1/m1
A2=m2 B2=-1 C2=y3-m2*x3 A1=m1 B1=-1 C1=y1-m1*x1
end
local intsecPoint= solveLinearEquation(A1,B1,C1,A2,B2,C2)
if pointLiesOnLine(intsecPoint.x, intsecPoint.y,x1,y1,x2,y2) then
return dist(intsecPoint.x, intsecPoint.y, x3,y3)
else
return math.min(dist(x3,y3,x1,y1),dist(x3,y3,x2,y2))
end
end