我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
对于感兴趣的人,这里是Joshua的Javascript代码到Objective-C的简单转换:
- (double)distanceToPoint:(CGPoint)p fromLineSegmentBetween:(CGPoint)l1 and:(CGPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
double dx = p.x - xx;
double dy = p.y - yy;
return sqrtf(dx * dx + dy * dy);
}
我需要这个解决方案与MKMapPoint一起工作,所以我将分享它,以防其他人需要它。只是一些小的改变,这将返回米为单位的距离:
- (double)distanceToPoint:(MKMapPoint)p fromLineSegmentBetween:(MKMapPoint)l1 and:(MKMapPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
return MKMetersBetweenMapPoints(p, MKMapPointMake(xx, yy));
}
其他回答
c#版本
public static FP DistanceToLineSegment(FPVector3 a, FPVector3 b, FPVector3 point)
{
var d = b - a;
var s = d.SqrMagnitude;
var ds = d / s;
var lambda = FPVector3.Dot(point - a, ds);
var p = FPMath.Clamp01(lambda) * d;
return (a + p - point).Magnitude;
}
这里是与c++答案相同的东西,但移植到pascal。点参数的顺序已经改变,以适应我的代码,但还是一样的东西。
function Dot(const p1, p2: PointF): double;
begin
Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
result.x := p1.x - p2.x;
result.y := p1.y - p2.y;
end;
function ShortestDistance2(const p,v,w : PointF) : double;
var
l2,t : double;
projection,tt: PointF;
begin
// Return minimum distance between line segment vw and point p
//l2 := length_squared(v, w); // i.e. |w-v|^2 - avoid a sqrt
l2 := Distance(v,w);
l2 := MPower(l2,2);
if (l2 = 0.0) then begin
result:= Distance(p, v); // v == w case
exit;
end;
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
if (t < 0.0) then begin
result := Distance(p, v); // Beyond the 'v' end of the segment
exit;
end
else if (t > 1.0) then begin
result := Distance(p, w); // Beyond the 'w' end of the segment
exit;
end;
//projection := v + t * (w - v); // Projection falls on the segment
tt.x := v.x + t * (w.x - v.x);
tt.y := v.y + t * (w.y - v.y);
result := Distance(p, tt);
end;
在javascript中使用几何:
var a = { x:20, y:20};//start segment
var b = { x:40, y:30};//end segment
var c = { x:37, y:14};//point
// magnitude from a to c
var ac = Math.sqrt( Math.pow( ( a.x - c.x ), 2 ) + Math.pow( ( a.y - c.y ), 2) );
// magnitude from b to c
var bc = Math.sqrt( Math.pow( ( b.x - c.x ), 2 ) + Math.pow( ( b.y - c.y ), 2 ) );
// magnitude from a to b (base)
var ab = Math.sqrt( Math.pow( ( a.x - b.x ), 2 ) + Math.pow( ( a.y - b.y ), 2 ) );
// perimeter of triangle
var p = ac + bc + ab;
// area of the triangle
var area = Math.sqrt( p/2 * ( p/2 - ac) * ( p/2 - bc ) * ( p/2 - ab ) );
// height of the triangle = distance
var h = ( area * 2 ) / ab;
console.log ("height: " + h);
这是一个自成体系的Delphi / Pascal版本的函数,基于上面约书亚的答案。使用TPoint用于VCL屏幕图形,但应该易于根据需要进行调整。
function DistancePtToSegment( pt, pt1, pt2: TPoint): double;
var
a, b, c, d: double;
len_sq: double;
param: double;
xx, yy: double;
dx, dy: double;
begin
a := pt.x - pt1.x;
b := pt.y - pt1.y;
c := pt2.x - pt1.x;
d := pt2.y - pt1.y;
len_sq := (c * c) + (d * d);
param := -1;
if (len_sq <> 0) then
begin
param := ((a * c) + (b * d)) / len_sq;
end;
if param < 0 then
begin
xx := pt1.x;
yy := pt1.y;
end
else if param > 1 then
begin
xx := pt2.x;
yy := pt2.y;
end
else begin
xx := pt1.x + param * c;
yy := pt1.y + param * d;
end;
dx := pt.x - xx;
dy := pt.y - yy;
result := sqrt( (dx * dx) + (dy * dy))
end;
I'm assuming you want to find the shortest distance between the point and a line segment; to do this, you need to find the line (lineA) which is perpendicular to your line segment (lineB) which goes through your point, determine the intersection between that line (lineA) and your line which goes through your line segment (lineB); if that point is between the two points of your line segment, then the distance is the distance between your point and the point you just found which is the intersection of lineA and lineB; if the point is not between the two points of your line segment, you need to get the distance between your point and the closer of two ends of the line segment; this can be done easily by taking the square distance (to avoid a square root) between the point and the two points of the line segment; whichever is closer, take the square root of that one.