我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
该算法基于求出指定直线与包含指定点的正交直线的交点,并计算其距离。在线段的情况下,我们必须检查交点是否在线段的点之间,如果不是这样,则最小距离是指定点与线段的一个端点之间的距离。这是一个c#实现。
Double Distance(Point a, Point b)
{
double xdiff = a.X - b.X, ydiff = a.Y - b.Y;
return Math.Sqrt((long)xdiff * xdiff + (long)ydiff * ydiff);
}
Boolean IsBetween(double x, double a, double b)
{
return ((a <= b && x >= a && x <= b) || (a > b && x <= a && x >= b));
}
Double GetDistance(Point pt, Point pt1, Point pt2, out Point intersection)
{
Double a, x, y, R;
if (pt1.X != pt2.X) {
a = (double)(pt2.Y - pt1.Y) / (pt2.X - pt1.X);
x = (a * (pt.Y - pt1.Y) + a * a * pt1.X + pt.X) / (a * a + 1);
y = a * x + pt1.Y - a * pt1.X; }
else { x = pt1.X; y = pt.Y; }
if (IsBetween(x, pt1.X, pt2.X) && IsBetween(y, pt1.Y, pt2.Y)) {
intersection = new Point((int)x, (int)y);
R = Distance(intersection, pt); }
else {
double d1 = Distance(pt, pt1), d2 = Distance(pt, pt2);
if (d1 < d2) { intersection = pt1; R = d1; }
else { intersection = pt2; R = d2; }}
return R;
}
其他回答
Consider this modification to Grumdrig's answer above. Many times you'll find that floating point imprecision can cause problems. I'm using doubles in the version below, but you can easily change to floats. The important part is that it uses an epsilon to handle the "slop". In addition, you'll many times want to know WHERE the intersection happened, or if it happened at all. If the returned t is < 0.0 or > 1.0, no collision occurred. However, even if no collision occurred, many times you'll want to know where the closest point on the segment to P is, and thus I use qx and qy to return this location.
double PointSegmentDistanceSquared( double px, double py,
double p1x, double p1y,
double p2x, double p2y,
double& t,
double& qx, double& qy)
{
static const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
static const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
double dx = p2x - p1x;
double dy = p2y - p1y;
double dp1x = px - p1x;
double dp1y = py - p1y;
const double segLenSquared = (dx * dx) + (dy * dy);
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
{
// segment is a point.
qx = p1x;
qy = p1y;
t = 0.0;
return ((dp1x * dp1x) + (dp1y * dp1y));
}
else
{
// Project a line from p to the segment [p1,p2]. By considering the line
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
// we find projection of point p onto the line.
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
if (t < kEpsilon)
{
// intersects at or to the "left" of first segment vertex (p1x, p1y). If t is approximately 0.0, then
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t > -kEpsilon)
{
// intersects at 1st segment vertex
t = 0.0;
}
// set our 'intersection' point to p1.
qx = p1x;
qy = p1y;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
}
else if (t > (1.0 - kEpsilon))
{
// intersects at or to the "right" of second segment vertex (p2x, p2y). If t is approximately 1.0, then
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t < (1.0 + kEpsilon))
{
// intersects at 2nd segment vertex
t = 1.0;
}
// set our 'intersection' point to p2.
qx = p2x;
qy = p2y;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
}
else
{
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
qx = p1x + (t * dx);
qy = p1y + (t * dy);
}
// return the squared distance from p to the intersection point. Note that we return the squared distance
// as an optimization because many times you just need to compare relative distances and the squared values
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
double dpqx = px - qx;
double dpqy = py - qy;
return ((dpqx * dpqx) + (dpqy * dpqy));
}
}
这是Javascript中最简单的完整代码。
(X, y)是目标点(x1, y)到(x2, y)是线段。
更新:修复了评论中0长度的行问题。
function pDistance(x, y, x1, y1, x2, y2) {
var A = x - x1;
var B = y - y1;
var C = x2 - x1;
var D = y2 - y1;
var dot = A * C + B * D;
var len_sq = C * C + D * D;
var param = -1;
if (len_sq != 0) //in case of 0 length line
param = dot / len_sq;
var xx, yy;
if (param < 0) {
xx = x1;
yy = y1;
}
else if (param > 1) {
xx = x2;
yy = y2;
}
else {
xx = x1 + param * C;
yy = y1 + param * D;
}
var dx = x - xx;
var dy = y - yy;
return Math.sqrt(dx * dx + dy * dy);
}
更新:Kotlin版本
fun getDistance(x: Double, y: Double, x1: Double, y1: Double, x2: Double, y2: Double): Double {
val a = x - x1
val b = y - y1
val c = x2 - x1
val d = y2 - y1
val lenSq = c * c + d * d
val param = if (lenSq != .0) { //in case of 0 length line
val dot = a * c + b * d
dot / lenSq
} else {
-1.0
}
val (xx, yy) = when {
param < 0 -> x1 to y1
param > 1 -> x2 to y2
else -> x1 + param * c to y1 + param * d
}
val dx = x - xx
val dy = y - yy
return hypot(dx, dy)
}
在f#中,点c到a和b之间的线段的距离为:
let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
let d = b - a
let s = d.Length
let lambda = (c - a) * d / s
let p = (lambda |> max 0.0 |> min s) * d / s
(a + p - c).Length
向量d沿着线段从a指向b。d/s与c-a的点积给出了无限直线与点c之间最接近点的参数。使用min和max函数将该参数钳制到范围0..s,使该点位于a和b之间。最后,a+p-c的长度是c到线段上最近点的距离。
使用示例:
pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
省道和颤振的解决方法:
import 'dart:math' as math;
class Utils {
static double shortestDistance(Point p1, Point p2, Point p3){
double px = p2.x - p1.x;
double py = p2.y - p1.y;
double temp = (px*px) + (py*py);
double u = ((p3.x - p1.x)*px + (p3.y - p1.y)* py) /temp;
if(u>1){
u=1;
}
else if(u<0){
u=0;
}
double x = p1.x + u*px;
double y = p1.y + u*py;
double dx = x - p3.x;
double dy = y - p3.y;
double dist = math.sqrt(dx*dx+dy*dy);
return dist;
}
}
class Point {
double x;
double y;
Point(this.x, this.y);
}
本想在GLSL中这样做,但如果可能的话,最好避免所有这些条件。使用clamp()可以避免两种端点情况:
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
float l = dot(AB, AB);
if (l <= 0.0000001) return A; // A and B are practically the same
return AP - AB*clamp(dot(AP, AB)/l, 0.0, 1.0); // do the projection
}
如果您可以确定A和B彼此不会非常接近,则可以简化为删除If()。事实上,即使A和B是相同的,我的GPU仍然给出了这个无条件版本的正确结果(但这是使用pre-OpenGL 4.1,其中GLSL除零是未定义的):
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
return AP - AB*clamp(dot(AP, AB)/dot(AB, AB), 0.0, 1.0);
}
计算距离是很简单的——GLSL提供了一个distance()函数,你可以在这个最近的点和P。
灵感来自Iñigo Quilez的胶囊距离函数代码