我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
在f#中,点c到a和b之间的线段的距离为:
let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
let d = b - a
let s = d.Length
let lambda = (c - a) * d / s
let p = (lambda |> max 0.0 |> min s) * d / s
(a + p - c).Length
向量d沿着线段从a指向b。d/s与c-a的点积给出了无限直线与点c之间最接近点的参数。使用min和max函数将该参数钳制到范围0..s,使该点位于a和b之间。最后,a+p-c的长度是c到线段上最近点的距离。
使用示例:
pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
其他回答
用Matlab直接实现Grumdrig
function ans=distP2S(px,py,vx,vy,wx,wy)
% [px py vx vy wx wy]
t=( (px-vx)*(wx-vx)+(py-vy)*(wy-vy) )/idist(vx,wx,vy,wy)^2;
[idist(px,vx,py,vy) idist(px,vx+t*(wx-vx),py,vy+t*(wy-vy)) idist(px,wx,py,wy) ];
ans(1+(t>0)+(t>1)); % <0 0<=t<=1 t>1
end
function d=idist(a,b,c,d)
d=abs(a-b+1i*(c-d));
end
使用arctangents的一行解决方案:
思路是将A移动到(0,0),并顺时针旋转三角形,使C位于X轴上, 当这种情况发生时,By就是距离。
a角= Atan(Cy - Ay, Cx - Ax); b角= Atan(By - Ay, Bx - Ax); AB长度=平方根((Bx - Ax)²+ (By - Ay)²) By = Sin (bAngle - aAngle) * ABLength
C#
public double Distance(Point a, Point b, Point c)
{
// normalize points
Point cn = new Point(c.X - a.X, c.Y - a.Y);
Point bn = new Point(b.X - a.X, b.Y - a.Y);
double angle = Math.Atan2(bn.Y, bn.X) - Math.Atan2(cn.Y, cn.X);
double abLength = Math.Sqrt(bn.X*bn.X + bn.Y*bn.Y);
return Math.Sin(angle)*abLength;
}
一行c#(要转换为SQL)
double distance = Math.Sin(Math.Atan2(b.Y - a.Y, b.X - a.X) - Math.Atan2(c.Y - a.Y, c.X - a.X)) * Math.Sqrt((b.X - a.X) * (b.X - a.X) + (b.Y - a.Y) * (b.Y - a.Y))
特征c++版本的3D线段和点
// Return minimum distance between line segment: head--->tail and point
double MinimumDistance(Eigen::Vector3d head, Eigen::Vector3d tail,Eigen::Vector3d point)
{
double l2 = std::pow((head - tail).norm(),2);
if(l2 ==0.0) return (head - point).norm();// head == tail case
// Consider the line extending the segment, parameterized as head + t (tail - point).
// We find projection of point onto the line.
// It falls where t = [(point-head) . (tail-head)] / |tail-head|^2
// We clamp t from [0,1] to handle points outside the segment head--->tail.
double t = max(0,min(1,(point-head).dot(tail-head)/l2));
Eigen::Vector3d projection = head + t*(tail-head);
return (point - projection).norm();
}
如果它是一条无限大的直线,而不是一条线段,最简单的方法是这样(在ruby中),其中mx + b是直线,(x1, y1)是已知的点
(y1 - mx1 - b).abs / Math.sqrt(m**2 + 1)
这里它使用Swift
/* Distance from a point (p1) to line l1 l2 */
func distanceFromPoint(p: CGPoint, toLineSegment l1: CGPoint, and l2: CGPoint) -> CGFloat {
let A = p.x - l1.x
let B = p.y - l1.y
let C = l2.x - l1.x
let D = l2.y - l1.y
let dot = A * C + B * D
let len_sq = C * C + D * D
let param = dot / len_sq
var xx, yy: CGFloat
if param < 0 || (l1.x == l2.x && l1.y == l2.y) {
xx = l1.x
yy = l1.y
} else if param > 1 {
xx = l2.x
yy = l2.y
} else {
xx = l1.x + param * C
yy = l1.y + param * D
}
let dx = p.x - xx
let dy = p.y - yy
return sqrt(dx * dx + dy * dy)
}