我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
I'm assuming you want to find the shortest distance between the point and a line segment; to do this, you need to find the line (lineA) which is perpendicular to your line segment (lineB) which goes through your point, determine the intersection between that line (lineA) and your line which goes through your line segment (lineB); if that point is between the two points of your line segment, then the distance is the distance between your point and the point you just found which is the intersection of lineA and lineB; if the point is not between the two points of your line segment, you need to get the distance between your point and the closer of two ends of the line segment; this can be done easily by taking the square distance (to avoid a square root) between the point and the two points of the line segment; whichever is closer, take the square root of that one.
其他回答
I'm assuming you want to find the shortest distance between the point and a line segment; to do this, you need to find the line (lineA) which is perpendicular to your line segment (lineB) which goes through your point, determine the intersection between that line (lineA) and your line which goes through your line segment (lineB); if that point is between the two points of your line segment, then the distance is the distance between your point and the point you just found which is the intersection of lineA and lineB; if the point is not between the two points of your line segment, you need to get the distance between your point and the closer of two ends of the line segment; this can be done easily by taking the square distance (to avoid a square root) between the point and the two points of the line segment; whichever is closer, take the square root of that one.
上面的函数在垂直线上不起作用。这是一个工作正常的函数! 与点p1 p2相交。CheckPoint为p;
public float DistanceOfPointToLine2(PointF p1, PointF p2, PointF p)
{
// (y1-y2)x + (x2-x1)y + (x1y2-x2y1)
//d(P,L) = --------------------------------
// sqrt( (x2-x1)pow2 + (y2-y1)pow2 )
double ch = (p1.Y - p2.Y) * p.X + (p2.X - p1.X) * p.Y + (p1.X * p2.Y - p2.X * p1.Y);
double del = Math.Sqrt(Math.Pow(p2.X - p1.X, 2) + Math.Pow(p2.Y - p1.Y, 2));
double d = ch / del;
return (float)d;
}
在f#中,点c到a和b之间的线段的距离为:
let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
let d = b - a
let s = d.Length
let lambda = (c - a) * d / s
let p = (lambda |> max 0.0 |> min s) * d / s
(a + p - c).Length
向量d沿着线段从a指向b。d/s与c-a的点积给出了无限直线与点c之间最接近点的参数。使用min和max函数将该参数钳制到范围0..s,使该点位于a和b之间。最后,a+p-c的长度是c到线段上最近点的距离。
使用示例:
pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
该算法基于求出指定直线与包含指定点的正交直线的交点,并计算其距离。在线段的情况下,我们必须检查交点是否在线段的点之间,如果不是这样,则最小距离是指定点与线段的一个端点之间的距离。这是一个c#实现。
Double Distance(Point a, Point b)
{
double xdiff = a.X - b.X, ydiff = a.Y - b.Y;
return Math.Sqrt((long)xdiff * xdiff + (long)ydiff * ydiff);
}
Boolean IsBetween(double x, double a, double b)
{
return ((a <= b && x >= a && x <= b) || (a > b && x <= a && x >= b));
}
Double GetDistance(Point pt, Point pt1, Point pt2, out Point intersection)
{
Double a, x, y, R;
if (pt1.X != pt2.X) {
a = (double)(pt2.Y - pt1.Y) / (pt2.X - pt1.X);
x = (a * (pt.Y - pt1.Y) + a * a * pt1.X + pt.X) / (a * a + 1);
y = a * x + pt1.Y - a * pt1.X; }
else { x = pt1.X; y = pt.Y; }
if (IsBetween(x, pt1.X, pt2.X) && IsBetween(y, pt1.Y, pt2.Y)) {
intersection = new Point((int)x, (int)y);
R = Distance(intersection, pt); }
else {
double d1 = Distance(pt, pt1), d2 = Distance(pt, pt2);
if (d1 < d2) { intersection = pt1; R = d1; }
else { intersection = pt2; R = d2; }}
return R;
}
使用arctangents的一行解决方案:
思路是将A移动到(0,0),并顺时针旋转三角形,使C位于X轴上, 当这种情况发生时,By就是距离。
a角= Atan(Cy - Ay, Cx - Ax); b角= Atan(By - Ay, Bx - Ax); AB长度=平方根((Bx - Ax)²+ (By - Ay)²) By = Sin (bAngle - aAngle) * ABLength
C#
public double Distance(Point a, Point b, Point c)
{
// normalize points
Point cn = new Point(c.X - a.X, c.Y - a.Y);
Point bn = new Point(b.X - a.X, b.Y - a.Y);
double angle = Math.Atan2(bn.Y, bn.X) - Math.Atan2(cn.Y, cn.X);
double abLength = Math.Sqrt(bn.X*bn.X + bn.Y*bn.Y);
return Math.Sin(angle)*abLength;
}
一行c#(要转换为SQL)
double distance = Math.Sin(Math.Atan2(b.Y - a.Y, b.X - a.X) - Math.Atan2(c.Y - a.Y, c.X - a.X)) * Math.Sqrt((b.X - a.X) * (b.X - a.X) + (b.Y - a.Y) * (b.Y - a.Y))