我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

只是遇到了这个,我想我应该添加一个Lua实现。它假设点以表{x=xVal, y=yVal}给出,直线或线段由包含两个点的表给出(见下面的例子):

function distance( P1, P2 )
    return math.sqrt((P1.x-P2.x)^2 + (P1.y-P2.y)^2)
end

-- Returns false if the point lies beyond the reaches of the segment
function distPointToSegment( line, P )
    if line[1].x == line[2].x and line[1].y == line[2].y then
        print("Error: Not a line!")
        return false
    end

    local d = distance( line[1], line[2] )

    local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)

    local projection = {}
    projection.x = line[1].x + t*(line[2].x-line[1].x)
    projection.y = line[1].y + t*(line[2].y-line[1].y)

    if t >= 0 and t <= 1 then   -- within line segment?
        return distance( projection, {x=P.x, y=P.y} )
    else
        return false
    end
end

-- Returns value even if point is further down the line (outside segment)
function distPointToLine( line, P )
    if line[1].x == line[2].x and line[1].y == line[2].y then
        print("Error: Not a line!")
        return false
    end

    local d = distance( line[1], line[2] )

    local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)

    local projection = {}
    projection.x = line[1].x + t*(line[2].x-line[1].x)
    projection.y = line[1].y + t*(line[2].y-line[1].y)

    return distance( projection, {x=P.x, y=P.y} )
end

使用示例:

local P1 = {x = 0, y = 0}
local P2 = {x = 10, y = 10}
local line = { P1, P2 }
local P3 = {x = 7, y = 15}
print(distPointToLine( line, P3 ))  -- prints 5.6568542494924
print(distPointToSegment( line, P3 )) -- prints false

其他回答

JavaScript中一个基于这个公式的更简洁的解决方案:

distToSegment: function (point, linePointA, linePointB){

    var x0 = point.X;
    var y0 = point.Y;

    var x1 = linePointA.X;
    var y1 = linePointA.Y;

    var x2 = linePointB.X;
    var y2 = linePointB.Y;

    var Dx = (x2 - x1);
    var Dy = (y2 - y1);

    var numerator = Math.abs(Dy*x0 - Dx*y0 - x1*y2 + x2*y1);
    var denominator = Math.sqrt(Dx*Dx + Dy*Dy);
    if (denominator == 0) {
        return this.dist2(point, linePointA);
    }

    return numerator/denominator;

}

这里是与c++答案相同的东西,但移植到pascal。点参数的顺序已经改变,以适应我的代码,但还是一样的东西。

function Dot(const p1, p2: PointF): double;
begin
  Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
  result.x := p1.x - p2.x;
  result.y := p1.y - p2.y;
end;

function ShortestDistance2(const p,v,w : PointF) : double;
var
  l2,t : double;
  projection,tt: PointF;
begin
  // Return minimum distance between line segment vw and point p
  //l2 := length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  l2 := Distance(v,w);
  l2 := MPower(l2,2);
  if (l2 = 0.0) then begin
    result:= Distance(p, v);   // v == w case
    exit;
  end;
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line.
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
  if (t < 0.0) then begin
    result := Distance(p, v);       // Beyond the 'v' end of the segment
    exit;
  end
  else if (t > 1.0) then begin
    result := Distance(p, w);  // Beyond the 'w' end of the segment
    exit;
  end;
  //projection := v + t * (w - v);  // Projection falls on the segment
  tt.x := v.x + t * (w.x - v.x);
  tt.y := v.y + t * (w.y - v.y);
  result := Distance(p, tt);
end;

快速实现http://paulbourke.net/geometry/pointlineplane/source.c

    static func magnitude(p1: CGPoint, p2: CGPoint) -> CGFloat {
        let vector = CGPoint(x: p2.x - p1.x, y: p2.y - p1.y)
        return sqrt(pow(vector.x, 2) + pow(vector.y, 2))
    }

    /// http://paulbourke.net/geometry/pointlineplane/
    /// http://paulbourke.net/geometry/pointlineplane/source.c
    static func pointDistanceToLine(point: CGPoint, lineStart: CGPoint, lineEnd: CGPoint) -> CGFloat? {

        let lineMag = magnitude(p1: lineEnd, p2: lineStart)
        let u = (((point.x - lineStart.x) * (lineEnd.x - lineStart.x)) +
                ((point.y - lineStart.y) * (lineEnd.y - lineStart.y))) /
                (lineMag * lineMag)

        if u < 0 || u > 1 {
            // closest point does not fall within the line segment
            return nil
        }

        let intersectionX = lineStart.x + u * (lineEnd.x - lineStart.x)
        let intersectionY = lineStart.y + u * (lineEnd.y - lineStart.y)

        return magnitude(p1: point, p2: CGPoint(x: intersectionX, y: intersectionY))
    }

在我自己的问题线程如何计算在C, c# / .NET 2.0或Java的所有情况下一个点和线段之间的最短2D距离?当我找到一个c#的答案时,我被要求把它放在这里:所以它是从http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static修改的:

//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] BC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    BC[0] = pointC[0] - pointB[0];
    BC[1] = pointC[1] - pointB[1];
    double dot = AB[0] * BC[0] + AB[1] * BC[1];

    return dot;
}

//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] AC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    AC[0] = pointC[0] - pointA[0];
    AC[1] = pointC[1] - pointA[1];
    double cross = AB[0] * AC[1] - AB[1] * AC[0];

    return cross;
}

//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
    double d1 = pointA[0] - pointB[0];
    double d2 = pointA[1] - pointB[1];

    return Math.Sqrt(d1 * d1 + d2 * d2);
}

//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC, 
    bool isSegment)
{
    double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
    if (isSegment)
    {
        double dot1 = DotProduct(pointA, pointB, pointC);
        if (dot1 > 0) 
            return Distance(pointB, pointC);

        double dot2 = DotProduct(pointB, pointA, pointC);
        if (dot2 > 0) 
            return Distance(pointA, pointC);
    }
    return Math.Abs(dist);
} 

我不是要回答问题,而是要问问题,所以我希望我不会因为某些原因而得到数百万张反对票,而是批评。我只是想(并被鼓励)分享其他人的想法,因为这个帖子中的解决方案要么是用一些奇异的语言(Fortran, Mathematica),要么被某人标记为错误。对我来说唯一有用的(由Grumdrig编写)是用c++编写的,没有人标记它有错误。但是它缺少被调用的方法(dot等)。

省道和颤振的解决方法:

import 'dart:math' as math;
 class Utils {
   static double shortestDistance(Point p1, Point p2, Point p3){
      double px = p2.x - p1.x;
      double py = p2.y - p1.y;
      double temp = (px*px) + (py*py);
      double u = ((p3.x - p1.x)*px + (p3.y - p1.y)* py) /temp;
      if(u>1){
        u=1;
      }
      else if(u<0){
        u=0;
      }
      double x = p1.x + u*px;
      double y = p1.y + u*py;
      double dx = x - p3.x;
      double dy = y - p3.y;
      double dist = math.sqrt(dx*dx+dy*dy);
      return dist;
   }
}

class Point {
  double x;
  double y;
  Point(this.x, this.y);
}