我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
2D坐标数组的Python Numpy实现:
import numpy as np
def dist2d(p1, p2, coords):
''' Distance from points to a finite line btwn p1 -> p2 '''
assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
dp = p2 - p1
st = dp[0]**2 + dp[1]**2
u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st
u[u > 1.] = 1.
u[u < 0.] = 0.
dx = (p1[0] + u * dp[0]) - coords[:, 0]
dy = (p1[1] + u * dp[1]) - coords[:, 1]
return np.sqrt(dx**2 + dy**2)
# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])
# List of coordinates
coords = np.array(
[[0., 0.],
[5., 5.],
[10., 10.],
[20., 20.]
])
d = dist2d(p1, p2, coords)
# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])
其他回答
您可以尝试PHP geo-math-php的库
composer require rkondratuk/geo-math-php:^1
例子:
<?php
use PhpGeoMath\Model\GeoSegment;
use PhpGeoMath\Model\Polar3dPoint;
$polarPoint1 = new Polar3dPoint(
40.758742779050706, -73.97855507715238, Polar3dPoint::EARTH_RADIUS_IN_METERS
);
$polarPoint2 = new Polar3dPoint(
40.74843388072615, -73.98566565776102, Polar3dPoint::EARTH_RADIUS_IN_METERS
);
$polarPoint3 = new Polar3dPoint(
40.74919365249446, -73.98133456388013, Polar3dPoint::EARTH_RADIUS_IN_METERS
);
$arcSegment = new GeoSegment($polarPoint1, $polarPoint2);
$nearestPolarPoint = $arcSegment->calcNearestPoint($polarPoint3);
// Shortest distance from point-3 to segment(point-1, point-2)
$geoDistance = $nearestPolarPoint->calcGeoDistanceToPoint($polarPoint3);
本想在GLSL中这样做,但如果可能的话,最好避免所有这些条件。使用clamp()可以避免两种端点情况:
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
float l = dot(AB, AB);
if (l <= 0.0000001) return A; // A and B are practically the same
return AP - AB*clamp(dot(AP, AB)/l, 0.0, 1.0); // do the projection
}
如果您可以确定A和B彼此不会非常接近,则可以简化为删除If()。事实上,即使A和B是相同的,我的GPU仍然给出了这个无条件版本的正确结果(但这是使用pre-OpenGL 4.1,其中GLSL除零是未定义的):
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
return AP - AB*clamp(dot(AP, AB)/dot(AB, AB), 0.0, 1.0);
}
计算距离是很简单的——GLSL提供了一个distance()函数,你可以在这个最近的点和P。
灵感来自Iñigo Quilez的胶囊距离函数代码
Lua解决方案
-- distance from point (px, py) to line segment (x1, y1, x2, y2)
function distPointToLine(px,py,x1,y1,x2,y2) -- point, start and end of the segment
local dx,dy = x2-x1,y2-y1
local length = math.sqrt(dx*dx+dy*dy)
dx,dy = dx/length,dy/length -- normalization
local p = dx*(px-x1)+dy*(py-y1)
if p < 0 then
dx,dy = px-x1,py-y1
return math.sqrt(dx*dx+dy*dy), x1, y1 -- distance, nearest point
elseif p > length then
dx,dy = px-x2,py-y2
return math.sqrt(dx*dx+dy*dy), x2, y2 -- distance, nearest point
end
return math.abs(dy*(px-x1)-dx*(py-y1)), x1+dx*p, y1+dy*p -- distance, nearest point
end
对于折线(有两条以上线段的线):
-- if the (poly-)line has several segments, just iterate through all of them:
function nearest_sector_in_line (x, y, line)
local x1, y1, x2, y2, min_dist
local ax,ay = line[1], line[2]
for j = 3, #line-1, 2 do
local bx,by = line[j], line[j+1]
local dist = distPointToLine(x,y,ax,ay,bx,by)
if not min_dist or dist < min_dist then
min_dist = dist
x1, y1, x2, y2 = ax,ay,bx,by
end
ax, ay = bx, by
end
return x1, y1, x2, y2
end
例子:
-- call it:
local x1, y1, x2, y2 = nearest_sector_in_line (7, 4, {0,0, 10,0, 10,10, 0,10})
对于懒人来说,以下是我在Objective-C语言中移植@Grumdrig的解决方案:
CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
CGFloat l2 = dist2(v, w);
if (l2 == 0.0f) return dist2(p, v);
CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
if (t < 0.0f) return dist2(p, v);
if (t > 1.0f) return dist2(p, w);
return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}
在数学
它使用线段的参数描述,并将点投影到线段定义的直线中。当参数在线段内从0到1时,如果投影在这个范围之外,我们计算到相应端点的距离,而不是法线到线段的直线。
Clear["Global`*"];
distance[{start_, end_}, pt_] :=
Module[{param},
param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
here means vector product*)
Which[
param < 0, EuclideanDistance[start, pt], (*If outside bounds*)
param > 1, EuclideanDistance[end, pt],
True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
]
];
策划的结果:
Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]
画出比截断距离更近的点:
等高线图: