我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
嘿,我昨天才写的。它在Actionscript 3.0中,基本上是Javascript,尽管你可能没有相同的Point类。
//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
var nearestPt:Point; //closest point on seqment to pt
var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
var bLenSq:Number = dot( b, b ); //Segment length squared
if( keyDot <= 0 ) //pt is "behind" st, use st
{
nearestPt = st
}
else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
{
nearestPt = st.add(b);
}
else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
{
var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
nearestPt = st.add(partOfB);
}
var dist:Number = (pt.subtract(nearestPt)).length;
return dist;
}
此外,这里有一个关于这个问题的相当完整和可读的讨论:notejot.com
其他回答
上面的函数在垂直线上不起作用。这是一个工作正常的函数! 与点p1 p2相交。CheckPoint为p;
public float DistanceOfPointToLine2(PointF p1, PointF p2, PointF p)
{
// (y1-y2)x + (x2-x1)y + (x1y2-x2y1)
//d(P,L) = --------------------------------
// sqrt( (x2-x1)pow2 + (y2-y1)pow2 )
double ch = (p1.Y - p2.Y) * p.X + (p2.X - p1.X) * p.Y + (p1.X * p2.Y - p2.X * p1.Y);
double del = Math.Sqrt(Math.Pow(p2.X - p1.X, 2) + Math.Pow(p2.Y - p1.Y, 2));
double d = ch / del;
return (float)d;
}
下面是HSQLDB的SQL实现:
CREATE FUNCTION dist_to_segment(px double, py double, vx double, vy double, wx double, wy double)
RETURNS double
BEGIN atomic
declare l2 double;
declare t double;
declare nx double;
declare ny double;
set l2 =(vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
IF l2 = 0 THEN
RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
ELSE
set t = ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
set t = GREATEST(0, LEAST(1, t));
set nx=vx + t * (wx - vx);
set ny=vy + t * (wy - vy);
RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
END IF;
END;
Postgres的实现:
CREATE FUNCTION dist_to_segment(px numeric, py numeric, vx numeric, vy numeric, wx numeric, wy numeric)
RETURNS numeric
AS $$
declare l2 numeric;
declare t numeric;
declare nx numeric;
declare ny numeric;
BEGIN
l2 := (vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
IF l2 = 0 THEN
RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
ELSE
t := ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
t := GREATEST(0, LEAST(1, t));
nx := vx + t * (wx - vx);
ny := vy + t * (wy - vy);
RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
END IF;
END;
$$ LANGUAGE plpgsql;
这里没有看到Java实现,所以我将Javascript函数从接受的答案转换为Java代码:
static double sqr(double x) {
return x * x;
}
static double dist2(DoublePoint v, DoublePoint w) {
return sqr(v.x - w.x) + sqr(v.y - w.y);
}
static double distToSegmentSquared(DoublePoint p, DoublePoint v, DoublePoint w) {
double l2 = dist2(v, w);
if (l2 == 0) return dist2(p, v);
double t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
if (t < 0) return dist2(p, v);
if (t > 1) return dist2(p, w);
return dist2(p, new DoublePoint(
v.x + t * (w.x - v.x),
v.y + t * (w.y - v.y)
));
}
static double distToSegment(DoublePoint p, DoublePoint v, DoublePoint w) {
return Math.sqrt(distToSegmentSquared(p, v, w));
}
static class DoublePoint {
public double x;
public double y;
public DoublePoint(double x, double y) {
this.x = x;
this.y = y;
}
}
这是一个自成体系的Delphi / Pascal版本的函数,基于上面约书亚的答案。使用TPoint用于VCL屏幕图形,但应该易于根据需要进行调整。
function DistancePtToSegment( pt, pt1, pt2: TPoint): double;
var
a, b, c, d: double;
len_sq: double;
param: double;
xx, yy: double;
dx, dy: double;
begin
a := pt.x - pt1.x;
b := pt.y - pt1.y;
c := pt2.x - pt1.x;
d := pt2.y - pt1.y;
len_sq := (c * c) + (d * d);
param := -1;
if (len_sq <> 0) then
begin
param := ((a * c) + (b * d)) / len_sq;
end;
if param < 0 then
begin
xx := pt1.x;
yy := pt1.y;
end
else if param > 1 then
begin
xx := pt2.x;
yy := pt2.y;
end
else begin
xx := pt1.x + param * c;
yy := pt1.y + param * d;
end;
dx := pt.x - xx;
dy := pt.y - yy;
result := sqrt( (dx * dx) + (dy * dy))
end;
您可以尝试PHP geo-math-php的库
composer require rkondratuk/geo-math-php:^1
例子:
<?php
use PhpGeoMath\Model\GeoSegment;
use PhpGeoMath\Model\Polar3dPoint;
$polarPoint1 = new Polar3dPoint(
40.758742779050706, -73.97855507715238, Polar3dPoint::EARTH_RADIUS_IN_METERS
);
$polarPoint2 = new Polar3dPoint(
40.74843388072615, -73.98566565776102, Polar3dPoint::EARTH_RADIUS_IN_METERS
);
$polarPoint3 = new Polar3dPoint(
40.74919365249446, -73.98133456388013, Polar3dPoint::EARTH_RADIUS_IN_METERS
);
$arcSegment = new GeoSegment($polarPoint1, $polarPoint2);
$nearestPolarPoint = $arcSegment->calcNearestPoint($polarPoint3);
// Shortest distance from point-3 to segment(point-1, point-2)
$geoDistance = $nearestPolarPoint->calcGeoDistanceToPoint($polarPoint3);