我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
嘿,我昨天才写的。它在Actionscript 3.0中,基本上是Javascript,尽管你可能没有相同的Point类。
//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
var nearestPt:Point; //closest point on seqment to pt
var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
var bLenSq:Number = dot( b, b ); //Segment length squared
if( keyDot <= 0 ) //pt is "behind" st, use st
{
nearestPt = st
}
else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
{
nearestPt = st.add(b);
}
else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
{
var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
nearestPt = st.add(partOfB);
}
var dist:Number = (pt.subtract(nearestPt)).length;
return dist;
}
此外,这里有一个关于这个问题的相当完整和可读的讨论:notejot.com
其他回答
这是我最后写的代码。这段代码假设一个点以{x:5, y:7}的形式定义。注意,这不是绝对最有效的方法,但它是我能想到的最简单、最容易理解的代码。
// a, b, and c in the code below are all points
function distance(a, b)
{
var dx = a.x - b.x;
var dy = a.y - b.y;
return Math.sqrt(dx*dx + dy*dy);
}
function Segment(a, b)
{
var ab = {
x: b.x - a.x,
y: b.y - a.y
};
var length = distance(a, b);
function cross(c) {
return ab.x * (c.y-a.y) - ab.y * (c.x-a.x);
};
this.distanceFrom = function(c) {
return Math.min(distance(a,c),
distance(b,c),
Math.abs(cross(c) / length));
};
}
在f#中,点c到a和b之间的线段的距离为:
let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
let d = b - a
let s = d.Length
let lambda = (c - a) * d / s
let p = (lambda |> max 0.0 |> min s) * d / s
(a + p - c).Length
向量d沿着线段从a指向b。d/s与c-a的点积给出了无限直线与点c之间最接近点的参数。使用min和max函数将该参数钳制到范围0..s,使该点位于a和b之间。最后,a+p-c的长度是c到线段上最近点的距离。
使用示例:
pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
对于感兴趣的人,这里是Joshua的Javascript代码到Objective-C的简单转换:
- (double)distanceToPoint:(CGPoint)p fromLineSegmentBetween:(CGPoint)l1 and:(CGPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
double dx = p.x - xx;
double dy = p.y - yy;
return sqrtf(dx * dx + dy * dy);
}
我需要这个解决方案与MKMapPoint一起工作,所以我将分享它,以防其他人需要它。只是一些小的改变,这将返回米为单位的距离:
- (double)distanceToPoint:(MKMapPoint)p fromLineSegmentBetween:(MKMapPoint)l1 and:(MKMapPoint)l2
{
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A * C + B * D;
double len_sq = C * C + D * D;
double param = dot / len_sq;
double xx, yy;
if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
return MKMetersBetweenMapPoints(p, MKMapPointMake(xx, yy));
}
我制作了一个交互式Desmos图来演示如何实现这一点:
https://www.desmos.com/calculator/kswrm8ddum
红点是A点,绿点是B点,C点是蓝色点。 您可以拖动图形中的点来查看值的变化。 左边的值“s”是线段的参数(即s = 0表示点A, s = 1表示点B)。 值“d”是第三点到经过A和B的直线的距离。
编辑:
有趣的小见解:坐标(s, d)是坐标系中第三点C的坐标,AB是单位x轴,单位y轴垂直于AB。
这里是与c++答案相同的东西,但移植到pascal。点参数的顺序已经改变,以适应我的代码,但还是一样的东西。
function Dot(const p1, p2: PointF): double;
begin
Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
result.x := p1.x - p2.x;
result.y := p1.y - p2.y;
end;
function ShortestDistance2(const p,v,w : PointF) : double;
var
l2,t : double;
projection,tt: PointF;
begin
// Return minimum distance between line segment vw and point p
//l2 := length_squared(v, w); // i.e. |w-v|^2 - avoid a sqrt
l2 := Distance(v,w);
l2 := MPower(l2,2);
if (l2 = 0.0) then begin
result:= Distance(p, v); // v == w case
exit;
end;
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
if (t < 0.0) then begin
result := Distance(p, v); // Beyond the 'v' end of the segment
exit;
end
else if (t > 1.0) then begin
result := Distance(p, w); // Beyond the 'w' end of the segment
exit;
end;
//projection := v + t * (w - v); // Projection falls on the segment
tt.x := v.x + t * (w.x - v.x);
tt.y := v.y + t * (w.y - v.y);
result := Distance(p, tt);
end;